
	

https://xexidekot.nurepikis.com/439238815000684714696978784290174059604160?nesesaguxoxonajumepabobafotivifufoxavudaxufowebevibokun=jawifazevubumemawunakudepagibujununarodozotozafurabafalamefizalomebamunikepolufebenuzajejigobonesolajanidepudakixetusivavozovaxisiwatufudisiwalazabirejuvonetadibugolezojowixetefepidirurerejegetimukusog&utm_term=amapiano+music+meaning&pusorekurojizizubepiwapiriwevotosufozabadoxekuwunuluribo=wuvawiwafajapifofabujexovebevapogizevopogamuzesuretepujerojologedufesisiwurewumurujogemesilebunixakiwezezovivobizar

David	J.	Barnes	&	Michael	Kölling	Objects	First	with	Java	A	Practical	Introduction	using	BlueJ	Seventh	Edition,	Pearson,	2016	ISBN	(US	edition):	978-0-138-087173	ISBN	(Global	Edition):	978-1-924-63599	These	are	the	instructions	for	the	generic	BlueJ	installer	(the	installer	"for	other	operating	systems").	This	installer	can	be	used	on	most	Unix-like
operating	systems	as	well	as	Mac	OS	X	and	Windows.	However,	it	is	generally	preferable	to	use	the	"native"	installer	when	available.	The	generic	installer	requires	that	a	Java	JDK	be	installed	separately.	There	are	two	possibilites	depending	on	the	version	of	BlueJ:	For	BlueJ	5.4.0	and	later,	OpenJDK	21	and	OpenJFX	21	are	required,	which	are	only
available	for	64-bit	operating	systems.	You	can	download	the	OpenJDK	from	Adoptium:	choose	version	"21	-	LTS"	and	then	your	operating	system	and	architecture.	You	also	need	OpenJFX	21	--	download	the	"SDK"	download	for	your	operating	system	from	Gluon.	This	is	a	zip	which	you	should	unzip	locally.	The	BlueJ	installer	will	ask	you	for	the	path
of	the	JDK	and	unzipped	JavaFX.	For	BlueJ	5.1.0	and	later,	OpenJDK	17	and	OpenJFX	17	are	required,	which	are	only	available	for	64-bit	operating	systems.	You	can	download	the	OpenJDK	from	Adoptium:	choose	version	"17	-	LTS"	and	then	your	operating	system	and	architecture.	You	also	need	OpenJFX	17	--	download	the	"SDK"	download	for	your
operating	system	from	Gluon.	This	is	a	zip	which	you	should	unzip	locally.	The	BlueJ	installer	will	ask	you	for	the	path	of	the	JDK	and	unzipped	JavaFX.	For	BlueJ	4.2.0	and	later,	OpenJDK	11	and	OpenJFX	11	are	required,	which	are	only	available	for	64-bit	operating	systems.	You	can	download	the	OpenJDK	from	the	official	site,	which	is	a	zip	which
you	must	unzip	locally.	You	also	need	OpenJFX	11	--	download	the	SDK	download	for	your	operating	system	from	Gluon.	Again,	this	is	a	zip	which	you	should	unzip	locally.	The	BlueJ	installer	will	ask	you	for	the	path	of	the	unzipped	directories.	For	BlueJ	4.0.0	to	4.1.4	a	Java	8	JDK	is	required,	and	we	recommend	installing	the	latest	JDK	8	update	--	you
can	download	the	Oracle	JDK	from	the	Oracle	website.	Make	sure	to	get	the	JDK	(not	the	JRE)	and	to	download	the	correct	version.	Installation	Procedure	Download	the	installer,	making	sure	to	keep	track	of	where	it	is	in	the	filesystem.	Start	your	Command	Prompt	or	Terminal	application.	You	will	complete	the	installation	by	typing	some	commands
into	this	application.	(For	Windows	users,	see	these	instructions	for	how	to	start	the	Command	Prompt).	Run	the	following	command:	java	-jar	...	replacing	with	the	correct	path	to	the	installer	.jar	file	that	you	downloaded.	If	you	receive	a	"command	not	found"	or	similar	error,	you	may	need	to	specify	the	full	path	to	the	Java	executable.	For	example:
"C:\Program	Files\Java\jdk1.8.0_144\bin\java.exe"	-jar	"C:\Users\Sarah\Downloads\bluej-411.jar"	(this	example	is	for	Windows;	other	operating	system	paths	normally	use	'/'	as	a	path	separator!).	The	installer	should	start	and	present	a	window	where	you	can	specify	both	the	path	to	the	JDK,	and	for	BlueJ	4.2.0	the	path	to	OpenJFX,	(make	sure	it	is
correct!)	and	where	you	want	BlueJ	to	be	installed.	It	is	usually	best	to	install	BlueJ	somewhere	under	your	home	folder.	Take	note	of	the	path	as	you	will	need	it	to	run	BlueJ	later.	Running	BlueJ	To	run	BlueJ:	On	Windows:	Start	the	Command	Prompt	application.	Change	into	the	directory	where	you	installed	BlueJ:	cd	...	replacing	with	the	path	you
chose	to	install	BlueJ	to.	Start	the	BlueJ	batch	file:	bluej.bat	On	other	operating	systems:	Start	the	Terminal	application.	Change	into	the	directory	where	you	installed	BlueJ:	cd	...	replacing	with	the	path	you	chose	to	install	BlueJ	to.	Start	the	BlueJ	shell	script	file:	./bluej	Support	Please	see	the	support	links	on	the	main	page.	Objects	First	with	Java	A
Practical	Introduction	using	BlueJ	Chapter	sequence	Chapter	1	Objects	and	Classes	Chapter	2	Understanding	Class	Definitions	Chapter	3	Object	Interaction	Chapter	4	Grouping	Objects	Chapter	5	Functional	Processing	of	Collections	Chapter	6	More-Sophisticated	Behavior	Chapter	7	Fixed-Size	Collections—Arrays	Chapter	8	Designing	Classes
Chapter	9	Well-Behaved	Objects	Chapter	10	Working	in	Teams	Chapter	11	Recursion	Chapter	12	Improving	Structure	with	Inheritance	Chapter	13	More	About	Inheritance	Chapter	14	Further	Abstraction	Techniques	Chapter	15	Data-Oriented	Classes	Chapter	16	A	Brief	History	of	Java	Chapter	17	Building	Graphical	User	Interfaces	Chapter	18
Handling	Errors	Chapter	19	Designing	Applications	Chapter	20	A	Case	Study	Back	to	book	description	Back	to	main	page	Reference/Tutorials	|	Extensions	|	FAQ	and	Support	|	Publications	Please	note	that	some	of	the	written	material	is	out-of-date.	We	are	currently	in	the	process	of	producing	updated	reference	material.	Unit	testing	Teamwork
Raspberry	Pi	BlueJ's	functionality	can	be	enhanced	using	a	variety	of	available	extensions.	The	FAQ	—	frequently	asked	questions.	Problems	commonly	encountered	when	using	BlueJ	and	how	to	solve	them.	Bug	Database	—	known	bugs	in	BlueJ.	For	problems	not	found	in	either	of	the	above:	Support	Request	Form	—	ask	for	help	if	you	have	problems
with	BlueJ.	A	number	of	journal	and	conference	papers	about	BlueJ	have	been	published.	For	details,	see	the	publications	page.	The	following	is	a	list	of	BlueJ-related	publications,	which	give	insights	into	the	design	and	development	of	BlueJ	and	computer	science	education	in	general:	[PDF]	Kouznetsova,	S.,	Using	BlueJ	and	Blackjack	to	teach	object-
oriented	design	concepts	in	CS1,	Journal	of	Computing	Sciences	in	Colleges,	Volume	22	Issue	4,	April	2007.	This	paper	describes	a	course	that	uses	an	implementation	of	the	card	game	'BlackJack'	with	BlueJ	as	an	introduction	to	OO	programming	(presented	at	CCSC:	Central	Plains	2007	conference,	April	2007)	[PDF]	Van	Haaster,	K.	and	Hagan,	D.,
Teaching	and	Learning	with	BlueJ:	an	Evaluation	of	a	Pedagogical	Tool,	Information	Science	+	Information	Technology	Education	Joint	Conference,	Rockhampton,	QLD,	Australia,	June	2004.	[PDF]	Kölling,	M.,	Quig,	B.,	Patterson,	A.	and	Rosenberg,	J.,	The	BlueJ	system	and	its	pedagogy,	Journal	of	Computer	Science	Education,	Special	issue	on
Learning	and	Teaching	Object	Technology,	Vol	13,	No	4,	Dec	2003.	This	is	a	general	BlueJ	overview	paper.	Something	we	should	have	written	long	ago,	but	didn't.	It	explains	some	of	the	basic	thoughts	behind	BlueJ,	and	some	recent	developments.	[PDF]	Patterson,	A.,	Kölling,	M.	and	Rosenberg,	J.,	Introducing	Unit	Testing	With	BlueJ,	Proceedings	of
the	8th	conference	on	Information	Technology	in	Computer	Science	Education	(ITiCSE	2003),	Thessaloniki,	2003.	This	paper	describes	the	idea	behind	JUnit	integration	in	BlueJ,	its	design	and	the	effect	for	the	user.	[PDF]	Kölling,	M.	and	Rosenberg,	J.,	Guidelines	for	Teaching	Object	Orientation	with	Java,	Proceedings	of	the	6th	conference	on
Information	Technology	in	Computer	Science	Education	(ITiCSE	2001),	Canterbury,	2001.	A	few	hints	about	how	to	design	assignments	for	introducing	Java	programming	(with	our	without	BlueJ).	These	are	some	general	thoughts	-	this	is	then	presented	in	more	concrete	terms	in	The	BlueJ	system	and	its	pedagogy	above.	[PDF]	Kölling,	M.,	Teaching
Object	Orientation	with	the	Blue	Environment,	Journal	of	Object-Oriented	Programming,	Vol.	12	No.	2,	14-23,	1999.	[PDF]	Kölling,	M.,	The	Design	of	an	Object-Oriented	Environment	and	Language	for	Teaching,	PhD	Thesis,	Basser	Department	of	Computer	Science,	University	of	Sydney,	1999.	[PDF]	Kölling,	M.,	The	Blue	Language,	Journal	of	Object-
Oriented	Programming,	Vol.	12	No.	1,	10-17,	1999.	[PDF]	Kölling,	M.,	The	Problem	of	Teaching	Object-Oriented	Programming,	Part	2:	Environments,	Journal	of	Object-Oriented	Programming,	Vol.	11	No.	9,	6-12,	1999.	[PDF]	Kölling,	M.,	The	Problem	of	Teaching	Object-Oriented	Programming,	Part	1:	Languages,	Journal	of	Object-Oriented
Programming,	Vol.	11	No.	8,	8-15,	1999.	[PDF]	Kölling,	M.	and	Rosenberg,	J.,	Support	for	Object-Oriented	Testing,	in	Technology	of	Object-Oriented	Languages	and	Systems	(TOOLS)	28,	IEEE,	Melbourne,	204-215,	1998.	[PDF]	Rosenberg,	J.	and	Kölling,	M.,	I/O	Considered	Harmful	(At	least	for	the	first	few	weeks),	in	Proceedings	of	the	Second
Australasian	Conference	on	Computer	Science	Education,	ACM,	Melbourne,	216-223,	July	1997.	[PDF]	Rosenberg,	J.	and	Kölling,	M.,	Testing	Object-Oriented	Programs:	Making	it	Simple,	in	Proceedings	of	28th	SIGCSE	Technical	Symposium	on	Computer	Science	Education,	ACM,	San	Jose,	Calif.,	77-81,	February	1997.	[PDF]	Kölling,	M.	and
Rosenberg,	J.,	An	Object-Oriented	Program	Development	Environment	for	the	First	Programming	Course,	in	Proceedings	of	27th	SIGCSE	Technical	Symposium	on	Computer	Science	Education,	ACM,	Philadelphia,	Pennsylvania,	83-87,	March	1996.	[PDF]	Kölling,	M.	and	Rosenberg,	J.,	Blue	-	A	Language	for	Teaching	Object-Oriented	Programming,	in
Proceedings	of	27th	SIGCSE	Technical	Symposium	on	Computer	Science	Education,	ACM,	Philadelphia,	Pennsylvania,	190-194,	March	1996.	[PDF]	Kölling,	M.,	B.	Koch	and	Rosenberg,	J.,	Requirements	for	a	First	Year	Object-Oriented	Teaching	Language,	in	ACM	SIGCSE	Bulletin,	ACM,	Nashville,	173-177,	March	1995.	BlueJ	now	supports	Git
repositories	as	part	of	its	teamwork	features.	This	tutorial	briefly	explains	how	to	use	the	new	Git	support	on	Bluej.	Contents	Introduction	to	version	control	and	Git	It	is	important	to	learn	some	basic	Git	terminology:	Working	copy:	The	place	where	your	BlueJ's	shared	project	is	located.	Whenever	you	make	any	changes	to	your	files	in	your	shared
BlueJ	project,	you	are	making	those	changes	in	the	working	copy.	Local	repository:	A	local	Git	repository	is	stored	in	the	same	directory	as	the	BlueJ	project	itself.	It	is	a	subdirectory	called	'.git'	that	contains	all	the	files	needed	in	order	to	perform	the	version	control	operations	(keep	track	of	files	changes,	deletions,	etc.).	You	should	not	touch	this
directory.	Remote	repository:	A	remote	Git	repository	is	used	to	keep	track	of	your	shared	BlueJ	project,	but	resides	in	another	computer.	It	is	usually	used	to	share	code	with	other	developers:	you	can	push	your	changes	to	the	remote	repository,	and	you	can	pull	changes	from	the	remote	repository	into	your	working	copy.	Creating	a	Git	repository
There	are	several	web-based	Git	repository	hosting	service.	They	can	be	a	good	option	if	you	want	to	very	quickly	and	easily	create	repositories	to	host	your	BlueJ	projects.	We	talk	about	some	of	the	most	popular	web-based	Git	repository	hosting	services	below.	GitHub	GitHub	is	one	of	the	most	popular	a	web-based	Git	repository	hosting	service.	It
provides	a	web-based	graphical	interface	where	you	can	see	your	repository,	its	files,	commits,	etc.	It	also	provides	forums	where	you	can	discuss	features	in	your	projects,	and	a	wiki	engine	where	you	and	your	collaborators	can	create	documentation	for	your	project.	In	order	to	use	GitHub,	you	should	create	a	completely	empty	repository.	You	can
find	a	tutorial	on	how	to	create	your	GitHub	repository	here.	Important:	in	step	5,	UNTICK	"Select	Initialize	this	repository	with	a	README",	so	that	you	get	an	empty	repository.	After	your	create	a	new	repostory,	GitHub	shows	a	screen	with	the	typical	usage	of	the	repository	using	the	Git	command	line	commands	(Figure	1),	but	this	should	be
ignored:	BlueJ	will	will	perform	them	automatically	when	checking	out	a	project.	Make	note	of	the	repository	address	(below	the	phrase:	"Quick	setup	-	if	you've	done	this	kind	of	thing	before"):	you	will	need	to	use	it	together	with	your	GitHub	username	and	password	to	share	a	project	into	or	checkout	a	project	from	this	repository	(see	the
instructions	in	the	following	sections).	Figure	1:	After	creating	a	new	repository	in	GitHub:	quick	setup	screen	On	GitHub	we	recommend	you	use	the	https	URI,	since	BlueJ	uses	username	and	password	authentication.	Bitbucket	Bitbucket	is	a	web-based	Git	repository	hosting	service,	similar	to	GitHub.	One	of	its	differences	from	GitHub	is	that	you
can	create	free	private	repositories	limited	to	5	users.	You	can	find	a	tutorial	on	how	to	create	a	Git	repository	in	Bitbucket	here.	Important:	change	the	"Include	a	README?"	setting	to	No	to	get	an	empty	repository.	GitLab	GitLab	is	an	application	to	code,	test	and	deploy	code.	It	provides	Git	repository	and	has	integrated	code	reviews,	issue
tracking,	etc.	Differently	from	GitHub	and	Bitbucket,	it	can	be	installed	in	your	local	network.	Given	you	have	GitLab	installed	in	your	network,	You	can	find	a	tutorial	on	how	to	create	a	Git	repository	here.	Sharing	a	BlueJ	project	using	Git	Once	you	have	your	empty	Git	repository	set,	you	may	want	to	share	your	BlueJ	project	with	other	users.	In
order	to	do	so,	open	the	existing	project	you	want	to	share.	Select:	Tools	->	Team	->	Share	this	project	menu	option	(Figure	2).	You	should	see	a	dialog	similar	to	the	one	in	Figure	3.	Figure	2:	Sharing	a	project.	Select	"Git"	as	your	server	type.	This	will	allow	you	to	enter:	Your	name:	The	name	associated	to	the	changes	you	make	to	the	repository.
Your	e-mail:	The	e-mail	associated	to	the	changes	you	make	to	the	repository.	User:	The	username	used	to	access	the	remote	repository.	This	is	usually	your	login	in	the	remote	repository,	and	it	is	usually	case	sensitive.	Password:	The	password	associated	to	the	username.	Repository	URI:	A	URI	containing	the	address	of	your	Git	repository	(ex:	.
Figure	3:	Settings	for	sharing/checking	out	a	project	with	Git.	Tip:	It	is	good	practice	to	click	on	the	"Check	connection"	button:	this	button	tests	if	BlueJ	can	connect	to	the	remote	repository	and	if	the	URI	does	contain	a	valid	Git	repository.	Opening	a	project	from	a	Git	repository	in	BlueJ	In	order	to	open	a	project	previously	shared	on	a	remote	Git
repository,	you	need	to	create	a	local	clone	of	the	remote	Git	repository	(this	operation	should	be	done	only	once).	This	local	clone	of	the	project	can	later	be	open	and	used	just	like	a	normal	BlueJ	project.	To	create	the	local	clone	of	the	project	in	BlueJ	you	need	to	execute	the	command	"check	out	project".	It	can	be	accessed	by	going	to	the	menus:
Tools->Team->Checkout	project...	Then	a	dialog	similar	to	the	one	in	Figure	3	will	appear.	Note:	The	Check	out	command	in	BlueJ	is	acutally	performing	a	'clone'	operation	to	create	a	local	copy	of	the	repository,	with	the	main	branch	checked	out	into	the	working	copy.	You	should	select	"Git"	as	your	server	type.	This	will	allow	you	to	enter:	Your
name:	The	name	associated	to	the	changes	you	make	to	the	repository.	Your	e-mail:	The	e-mail	associated	to	the	changes	you	make	to	the	repository.	User:	The	username	used	to	access	the	remote	repository.	This	is	usually	your	login	in	the	remote	machine,	and	it	is	usually	case	sensitive.	Password:	The	password	associated	to	the	username.
Repository	URI:	A	URI	containing	the	address	of	your	Git	repository	containing	the	BlueJ	project	(ex:	.	Tip:	Click	on	the	"Check	connection"	button:	this	button	tests	if	BlueJ	can	connect	to	the	remote	repository	and	if	the	URI	does	contain	a	valid	Git	repository.	After	clicking	on	"OK",	you	should	now	select	where	you	want	BlueJ	to	checkout	the	project
in	your	machine.	You	should	choose	a	name	for	your	project.	The	project	name	will	be	the	folder's	name.	Checking	the	project	status	Once	you	have	a	shared	project,	it	is	likely	that	either	you	or	other	users	made	changes	to	the	project,	therefore,	it	is	important	to	know	if	you	have	changes	that	are	ready	to	commit	to	your	local	repository,	or	changes
ready	put	in	the	remote	repository	(push),	or	if	you	need	to	update	your	local	project	because	someone	made	a	change	in	the	remote	repository.	This	information	is	presented	on	the	status	dialog,	which	can	be	displayed	by	pressing	the	"Status"	button	on	BlueJ	main	screen	(Figure	4)	Figure	4:	BlueJ	main	screen.	You	can	see	the	status	dialogue	below:
Figure	5:	BlueJ	Status	dialogue	with	local	changes.	The	Figures	5	and	6	have	three	columns:	File	name:	The	files	that	are	being	tracked	by	the	version	control.	These	are	the	project	.java	files,	the	Project's	README.TXT	file,	any	subfolders	and	the	Diagram	layouts	(a	Bluej	special	file	that	helps	drawing	the	class	diagrams).	Local	status:	The	status	of
the	files	in	the	working	copy	relative	to	the	local	repository.	Remote	status:	The	status	of	the	listed	files	relative	to	remote	repository:	in	Figure	9,	we	can	see	that	a	push	action	would	create	"NewClass.java",	modifty	"README.TXT"	and	remove	"Class2.java".	A	file	can	have	one	of	the	following	Local	status:	Blank:	The	file	is	up	to	date	in	the	local
repository	and	no	changes	should	take	place.	New:	The	file	is	new	in	the	working	copy.	A	commit	would	make	Git	track	the	file	and	add	it	to	the	local	repository.	Modified:	The	file	exists	in	the	local	repository,	but	has	been	modified	in	the	working	copy.	A	commit	would	save	those	changes	to	the	local	repository.	Deleted:	The	files	exist	in	the
repository,	but	it	was	deleted.	A	commit	would	remove	the	file	from	the	repository.	Needs	pull:	This	status	can	only	appear	in	the	remote	repository,	and	it	is	always	in	conjuction	to	one	of	the	previous	status,	indicating	which	effect	a	pull	would	make	in	the	remote	repository.	Needs	update:This	status	can	only	appear	in	the	remote	repository,	and
indicates	that	your	local	file	is	older	in	comparison	to	the	one	in	the	remote	repository:	you	need	to	perform	an	update.	A	file	can	have	one	of	the	following	Remote	status:	Blank:	The	file	is	up	to	date	in	the	remote	repository	and	no	changes	should	take	place.	Needs	pull:	This	status	can	only	appear	in	the	remote	repository,	and	it	is	always	in
conjuction	to	one	of	the	previous	status,	indicating	which	effect	a	pull	would	make	in	the	remote	repository.	Needs	update:This	status	can	only	appear	in	the	remote	repository,	and	indicates	that	your	local	file	is	older	in	comparison	to	the	one	in	the	remote	repository:	you	need	to	perform	an	update.	Figure	6:	BlueJ	Status	dialogue	with	changes	to	be
pushed.	Committing	and	pushing	changes	Commit	As	you	make	changes	in	your	project,	you	may	want	to	put	those	changes	into	your	local	repository.	This	way	you	may	share	those	changes	with	other	users,	by	pushing	changes	into	the	remote	repository.	In	Figure	7,	we	show	the	commit/push	window.	In	the	window	we	can	see	a	list	of	files	ready	to
commit:	These	files	have	modified	in	some	way	since	the	last	time	an	update	was	made:	you	may	have	delete	some	of	them	(Class2.java);	or	created	new	ones	(NewClass.java).	You	will	need	to	write	a	comment	in	your	commit:	what	are	the	new	changes	that	you	made	in	this	commit?	this	is	important	as	a	way	of	describing	what	these	changes	do.	This
comment	will	be	written	in	the	repository	log	and	are	a	useful	way	of	quickly	and	clearly	communicating	your	changes	to	other	users.	The	commit	is	done	by	pressing	the	Commit	button.	You	don't	need	to	be	connected	in	order	to	make	commits:	Git	is	a	distributed	version	control	system,	which	means	that	you	have	a	fully	functional	local	repository
inside	your	BlueJ	project,	and	when	you	commit	you	are	actually	putting	your	changes	to	this	local	repository.	Figure	7:	Commiting	changes	into	the	local	repository.	Push	After	commiting	you	changes	to	your	local	repository,	they	are	ready	to	be	pushed	to	the	remote	repository,	where	they	can	be	shared	by	the	other	users.	You	can	see	the	list	of	files
ready	to	be	pushed	in	Figure	5.	Figure	8:	Pushing	changes	into	the	remote	repository.	You	need	to	be	able	to	connect	to	the	remote	repository	when	you	push.	BlueJ	may	ask	for	the	password	to	connect	to	the	remote	repository.	Checking	project	history	BlueJ	offers	a	way	of	looking	into	the	repository	log	where	you	can	see	the	commit	messages,	files
affected	by	each	commit	and	the	user	who	made	the	commit.	You	can	access	the	repository	log	by	opening	the	menus	Tools->Team->Project	History.	An	example	of	an	entry	can	be	seen	in	Figure	9.	Figure	9:	The	project	history	entry.	In	big	projects,	or	projects	with	many	participants	you	may	have	a	quite	long	history.	For	that	purpose,	we	added	two
filters	at	the	end	of	the	window:	"Show	file"	where	we	display	only	the	commits	that	contains	the	selected	file,	and	"Show	user",	where	you	can	see	the	only	the	commits	of	the	selected	user.	Updating	your	project	Pressing	the	"Update"	button	on	the	man	screen	will	open	the	update	window	(Figure	10),	there	you	will	see	the	list	of	files	affected	by	this
update.	To	update,	you	should	press	the	"update"	button.	Figure	10:	The	Update	project	window.	Support	Please	see	support	page.	Objects	First	with	Java	A	Practical	Introduction	using	BlueJ	This	document	describes	the	goals,	contents	and	main	pedagogical	concepts	of	this	book.	It	is	largely	identical	with	the	preface	in	the	book.	Contents	of	this
description:	Java	BlueJ	Real	objects	first	An	iterative	approach	Project-driven	approach	Concept	sequence	rather	than	language	constructs	Chapter	sequence	This	book	is	an	introduction	to	object-oriented	programming	for	beginners.	The	main	focus	of	the	book	is	general	object-oriented	and	programming	concepts	from	a	software	engineering	per-
spective.	While	the	first	chapters	are	written	for	students	with	no	programming	experience,	later	chapters	are	suitable	for	more	advanced	or	professional	programmers	as	well.	In	particular,	programmers	with	experience	in	a	non-object-oriented	language	who	wish	to	migrate	their	skills	into	object	orienta-tion	should	also	be	able	to	benefit	from	the
book.	We	use	two	tools	throughout	the	book	to	enable	the	concepts	introduced	to	be	put	into	practice:	the	Java	programming	language	and	the	Java	development	environment	BlueJ.	Java	Java	was	chosen	because	of	both	its	language	design	and	its	popularity.	The	Java	programming	language	itself	provides	a	clean	implementation	of	most	of	the
important	object-oriented	concepts,	and	serves	well	as	an	introductory	teaching	language.	Its	popularity	ensures	an	immense	pool	of	support	resources.	In	any	subject	area,	having	a	variety	of	sources	of	information	available	is	very	helpful,	for	teach-ers	and	students	alike.	For	Java	in	particular,	countless	books,	tutorials,	exercises,	compilers,	en-
vironments,	and	quizzes	already	exist,	in	many	different	kinds	and	styles.	Many	of	them	are	online	and	many	are	available	free	of	charge.	The	huge	amount	of	high	quality	support	material	makes	Java	an	excellent	choice	as	an	introduction	to	object-oriented	programming.	With	so	much	Java	material	already	available,	is	there	still	room	for	more	to	be
said	about	it?	We	think	there	is,	and	the	second	tool	we	use	is	one	of	the	reasons	.	.	.	BlueJ	BlueJ	deserves	some	comment.	This	book	is	unique	in	its	completely	integrated	use	of	the	BlueJ	environment.	BlueJ	is	a	Java	development	environment	that	is	being	developed	and	maintained	by	the	Programming	Education	Tools	Group	at	King's	College
London,	UK,	explicitly	as	an	environment	for	teaching	introductory	object-oriented	programming.	It	is	better	suited	to	introductory	teaching	than	other	environments	for	a	variety	of	reasons:	The	user	interface	is	much	simpler.	Beginning	students	can	typically	use	the	BlueJ	environ-ment	in	a	competent	manner	after	20	minutes	of	introduction.	From
then	on,	instruction	can	concentrate	on	the	important	concepts	at	hand—object	orientation	and	Java—and	no	time	needs	to	be	wasted	talking	about	environments,	file	systems,	class	paths,	or	DLL	conflicts.	The	environment	supports	important	teaching	tools	not	available	in	other	environments.	One	of	them	is	visualization	of	class	structure.	BlueJ
automatically	displays	a	UML-like	diagram	rep-resenting	the	classes	and	relationships	in	a	project.	Visualizing	these	important	concepts	is	a	great	help	to	both	teachers	and	students.	It	is	hard	to	grasp	the	concept	of	an	object	when	all	you	ever	see	on	the	screen	is	lines	of	code!	The	diagram	notation	is	a	simple	subset	of	UML,	tailored	to	the	needs	of
beginning	students.	This	makes	it	easy	to	understand,	but	also	allows	migration	to	full	UML	in	later	courses.	One	of	the	most	important	strengths	of	the	BlueJ	environment	is	the	user's	ability	to	directly	create	objects	of	any	class,	and	then	to	interact	with	their	methods.	This	creates	the	opportunity	for	direct	experimentation	with	objects,	with	little
overhead	in	the	environment.	Students	can	almost	"feel"	what	it	means	to	create	an	object,	call	a	method,	pass	a	parameter,	or	receive	a	re-turn	value.	They	can	try	out	a	method	immediately	after	it	has	been	written,	without	the	need	to	write	test	drivers.	This	facility	is	an	invaluable	aid	in	understanding	the	underlying	concepts	and	language	details.
BlueJ	includes	numerous	other	tools	and	characteristics	that	are	specifically	designed	for	stu-dents	of	software	development.	Some	are	aimed	at	helping	with	understanding	fundamental	concepts	(such	as	the	scope	highlighting	in	the	editor),	some	are	designed	to	introduce	addi-tional	tools	and	techniques,	such	as	integrated	testing	using	JUnit,	or
teamwork	using	a	ver-sion	control	system,	such	as	GIT,	once	the	students	are	ready.	Several	of	these	features	are	unique	to	the	BlueJ	environment.	BlueJ	is	a	full	Java	environment.	It	is	not	a	cut-down,	simplified	version	of	Java	for	teaching.	It	runs	on	top	of	the	OpenJDK	Java	Development	Kit,	and	makes	use	of	the	standard	compiler	and	virtual
machine.	This	ensures	that	it	always	conforms	to	the	official	and	most	up-to-date	Java	specification.	The	authors	of	this	book	have	many	years	of	teaching	experience	with	the	BlueJ	environment	(and	many	more	years	without	it	before	that).	We	both	have	experienced	how	the	use	of	BlueJ	has	in-creased	the	involvement,	understanding,	and	activity	of
students	in	our	courses.	One	of	the	au-thors	is	also	the	development	lead	of	the	BlueJ	system.	Real	objects	first	One	of	the	reasons	for	choosing	BlueJ	was	that	it	allows	an	approach	where	teachers	truly	deal	with	the	important	concepts	first.	"Objects	first"	has	been	a	battle	cry	for	many	textbook	authors	and	teachers	for	some	time.	Unfortunately,	the
Java	language	does	not	make	this	noble	goal	very	easy.	Numerous	hurdles	of	syntax	and	detail	have	to	be	overcome	before	the	first	experience	with	a	living	object	arises.	The	minimal	Java	program	to	create	and	call	an	object	typically	includes	writing	a	class;	writing	a	main	method,	including	concepts	such	as	static	methods,	parameters,	and	arrays	in
the	signature;	a	statement	to	create	the	object	("new");	an	assignment	to	a	variable;	the	variable	declaration,	including	variable	type;	a	method	call,	using	dot	notation;	possibly	a	parameter	list.	As	a	result,	most	textbooks	typically	either	have	to	work	their	way	through	this	forbidding	list,	and	only	reach	objects	somewhere	around	the	fourth	chapter;
or	use	a	"Hello,	world""-style	program	with	a	single	static	main	method	as	the	first	example,	thus	not	creating	any	objects	at	all.	With	BlueJ,	this	is	not	a	problem.	A	student	can	create	an	object	and	call	its	methods	as	the	very	first	activity!	Because	users	can	create	and	interact	with	objects	directly,	concepts	such	as	classes,	objects,	methods,	and
parameters	can	easily	be	discussed	in	a	concrete	manner	before	looking	at	the	first	line	of	Java	syntax.	Instead	of	explaining	more	about	this	here,	we	suggest	that	the	curi-ous	reader	dip	into	Chapter	1—things	will	quickly	become	clear	then.	An	iterative	approach	Another	important	aspect	of	this	book	is	that	it	follows	an	iterative	style.	In	the
computing	educa-tion	community,	a	well-known	educational	design	pattern	exists	that	states	that	important	con-cepts	should	be	taught	early	and	often.	It	is	very	tempting	for	textbook	authors	to	try	and	say	everything	about	a	topic	at	the	point	where	it	is	introduced.	For	example,	it	is	common,	when	in-troducing	types,	to	give	a	full	list	of	built-in	data
types,	or	to	discuss	all	available	kinds	of	loop	when	introducing	the	concept	of	a	loop.	These	two	approaches	conflict:	we	cannot	concentrate	on	discussing	important	concepts	first,	and	at	the	same	time	provide	complete	coverage	of	all	topics	encountered.	Our	experience	with	text-books	is	that	much	of	the	detail	is	initially	distracting,	and	has	the
effect	of	drowning	the	im-portant	points,	thus	making	them	harder	to	grasp.	In	this	book	we	touch	on	all	of	the	important	topics	several	times,	both	within	the	same	chapter	and	across	different	chapters.	Concepts	are	usually	introduced	at	a	level	of	detail	necessary	for	un-derstanding	and	applying	to	the	task	at	hand.	They	are	revisited	later	in	a
different	context,	and	understanding	deepens	as	the	reader	continues	through	the	chapters.	This	approach	also	helps	to	deal	with	the	frequent	occurrence	of	mutual	dependencies	between	concepts.	Some	teachers	may	not	be	familiar	with	the	iterative	approach.	Looking	at	the	first	few	chapters,	teachers	used	to	a	more	sequential	introduction	will	be
surprised	about	the	number	of	concepts	touched	on	this	early.	It	may	seem	like	a	steep	learning	curve.	It	is	important	to	understand	that	this	is	not	the	end	of	the	story.	Students	are	not	expected	to	un-derstand	everything	about	these	concepts	immediately.	Instead,	these	fundamental	concepts	will	be	revisited	again	and	again	throughout	the	book,
allowing	students	to	get	a	deeper	understanding	over	time.	Since	their	knowledge	level	changes	as	they	work	their	way	forward,	revisiting	im-portant	topics	later	allows	them	to	gain	a	deeper	understanding	overall.	We	have	tried	this	approach	with	students	many	times.	Sometimes	students	have	fewer	problems	dealing	with	it	than	some	long-time
teachers.	And	remember:	a	steep	learning	curve	is	not	a	prob-lem	as	long	as	you	ensure	that	your	students	can	climb	it!	Project-driven	approach	The	introduction	of	material	in	the	book	is	project	driven.	The	book	discusses	numerous	pro-gramming	projects	and	provides	many	exercises.	Instead	of	introducing	a	new	construct	and	then	providing	an
exercise	to	apply	this	construct	to	solve	a	task,	we	first	provide	a	goal	and	a	prob-lem.	Analyzing	the	problem	at	hand	determines	what	kinds	of	solutions	we	need.	As	a	conse-quence,	language	constructs	are	introduced	as	they	are	needed	to	solve	the	problems	before	us.	Early	chapters	provide	at	least	two	discussion	examples.	These	are	projects	that
are	discussed	in	detail	to	illustrate	the	important	concepts	of	each	chapter.	Using	two	very	different	examples	sup-ports	the	iterative	approach:	each	concept	is	revisited	in	a	different	context	after	it	is	introduced.	In	designing	this	book	we	have	tried	to	use	a	lot	of	different	example	projects.	This	will	hopefully	serve	to	capture	the	reader's	interest,
and	also	illustrate	the	variety	of	different	contexts	in	which	the	concepts	can	be	applied.	We	hope	that	our	projects	serve	to	give	teachers	good	starting	points	and	many	ideas	for	a	wide	variety	of	interesting	assignments.	The	implementation	for	all	our	projects	is	written	very	carefully,	so	that	many	peripheral	issues	may	be	studied	by	reading	the
projects'	source	code.	We	are	strong	believers	in	learning	by	read-ing	and	imitating	good	examples.	For	this	to	work,	however,	it	is	important	that	the	examples	are	well	written	and	worth	imitating.	We	have	tried	to	create	great	examples.	All	projects	are	designed	as	open-ended	problems.	While	one	or	more	versions	of	each	problem	are	discussed	in
detail	in	the	book,	the	projects	are	designed	so	that	further	extensions	and	improve-ments	can	be	done	as	student	projects.	Complete	source	code	for	all	projects	is	included.	A	list	of	projects	discussed	in	this	book	is	provided	in	the	next	section.	Concept	sequence	rather	than	language	constructs	One	other	aspect	that	distinguishes	this	book	from
many	others	is	that	it	is	structured	along	fun-damental	software	development	tasks,	not	necessarily	according	to	the	particular	Java	language	constructs.	One	indicator	of	this	is	the	chapter	headings.	In	this	book	you	will	not	find	traditional	chapter	titles	such	as	"Primitive	data	types"	or	"Control	structures."	Structuring	by	fundamental	development
tasks	allows	us	to	present	a	more	general	introduction	that	is	not	driven	by	intrica-cies	of	the	particular	programming	language	utilized.	We	also	believe	that	it	is	easier	for	students	to	follow	the	motivation	of	the	introduction,	and	that	it	makes	much	more	interesting	reading.	As	a	result	of	this	approach,	it	is	less	straightforward	to	use	the	book	as	a
reference	book.	Intro-ductory	textbooks	and	reference	books	have	different,	partly	competing,	goals.	To	a	certain	extent	a	book	can	try	to	be	both,	but	compromises	have	to	be	made	at	certain	points.	Our	book	is	clearly	designed	as	a	textbook,	and	wherever	a	conflict	occurred,	the	textbook	style	took	precedence	over	its	use	as	a	reference	book.	We
have,	however,	provided	support	for	use	as	a	reference	book	by	listing	the	Java	constructs	in-troduced	in	each	chapter	in	the	chapter	introduction.	Next:	A	short	description	of	each	chapter	See	the	License	for	the	terms	under	which	the	source	is	distributed.	5.5.0	3	June	2025	Changes	in	this	version:	Fixed	slowdown	bug	with	Java	classes	over	5000
lines.	Fixed	bug	with	terminal	sometimes	not	showing	exceptions	if	the	stderr	pane	was	not	previously	visible.	Fixed	bug	with	rectangle	characters	showing	up	in	the	documentation	view	on	Windows.	Fixed	bug	with	assert	panel	not	changing	the	OK	button	to	enabled	(and	the	field	to	disabled)	when	selecting	null/not-null	as	the	assertion	while
recording	a	test	Show	quick	fixes	even	if	the	locale	is	one	that	supports	localised	Java	compiler	error	messages	(e.g.	German)	The	Edit->New	CSS	File	has	become	Edit->New	CSS/Text	File	and	will	let	you	create	text	files	Select	several	lines	in	the	Java	editor,	right-click	and	select	"Screenshot	line(s)".	A	screenshot	of	those	lines	will	be	put	on	the
clipboard.	The	lines	must	all	be	visible	on	screen.	In	the	Java	editor,	middle-click	the	name	of	any	other	class	to	go	to	its	definition/documentation.	(Also	available	on	right-click	menu.)	When	you	inspect	a	String	object,	new	pane	for	string	content	and	new	"Copy	to	clipboard"	button.	New	"Re-run"	button	on	left	side	of	main	window,	re-runs	last
constructor	or	static	method	(or	JavaFX	app)	with	same	parameters.	(Compiles	first,	if	needed.)	The	New	Class	dialog	now	has	a	new	dropdown:	Template	or	Minimal;	the	latter	lets	you	create	a	class/interface/enum/record/etc	without	anything	in	the	body.	New	checkbox	in	Preferences,	in	Interface	->	General	that	lets	you	turn	off	re-opening	last
open	projects.	Slightly	increased	the	space	for	line	numbers	to	help	with	four-digit	line	numbers.	Terminal	window	has	new	"Always	on	top"	menu	option.	Made	Cmd-comma	open	preferences	on	macOS.	Ctrl-+	should	increase	font	size	on	non-QWERTY	keyboards.	Increased	default	font	size	to	12	in	new	installations.	Line	numbers	on	by	default	in	new
installations.	Editor	tabs	can	be	dragged	to	reorder	them	in	the	editor	windows.	Ctrl-scrollwheel	on	Windows	and	Linux,	and	two	finger	pinch-zoom	gesture	on	all	OSes	changes	the	editor	font	size.	Changed	the	default	Java	editor	and	terminal	font	to	"Source	Code	Pro",	which	supports	box-drawing	characters.	5.4.2	12	March	2025	Changes	in	this
version:	Upgraded	jGit	library	andswitched	jGit-SSH	library.	Fixed	various	Git	issues	with	SSH.	Fixed	Git	"Check	connection"	to	stop	saying	connection	was	fine	in	some	cases	when	it	was	not.	Changed	Git	settings	dialog	to	ask	for	access	token	instead	of	password	when	connecting	to	Github/Gitlab.	Removed	macOS	messages	from	Terminal	window.
Improved	message	when	you	attempt	to	run	the	Aarch	Mac	version	on	an	Intel	CPU.	5.4.1	19	September	2024	Changes	in	this	version:	Fixed	a	bug	where	errors	would	sometimes	not	show	as	red	underlines	in	the	editor.	The	side	bar	would	indicate	an	error	on	the	line	but	it	was	impossible	to	see	the	error	message.	Fixed	a	bug	where	the	Windows
MSI	installer	would	allow	multiple	per-machine	installations	of	different	versions	(in	the	same	directory).	BlueJ	5.4.1	will	correctly	remove	all	prior	per-machine	installations	of	earlier	BlueJ	versions.	Fixed	a	missing	message	in	the	Stride	editor.	Fixed	a	bug	where	the	right-click	menu	for	the	Java	editor	side	bar	(which	let	you	turn	on	line	numbers)
would	not	appear	on	Windows.	5.4.0	9	August	2024	Changes	in	this	version:	Moved	to	Java	21,	including	support	for	the	new	language	feature	switch	patterns	(including	records).	Changed	Mac	build	to	use	the	JDK	for	Apple	silicon	(M1,	M2,	etc);	Intel	build	is	still	available.	Added	ARM64	Linux	build	to	support	Raspberry	Pi.	Fixed	bug	with	scope
highlighting	sometimes	being	missing	on	some	lines.	Fixed	some	issues	with	entering	non-English	characters	(e.g.	Chinese,	Korean)	in	Java	and	Stride.	Removed	the	method	name	tooltip	on	hover	in	the	terminal.	Allowed	the	terminal	scope	highlighting	to	be	turned	off	via	an	option	in	the	preferences.	Fixed	terminal	not	re-rendering	when	font	size	is
changed.	Stopped	infinite	compilation	which	could	occur	when	you	have	an	error	in	a	child	class	with	a	sealed	parent.	Fixed	a	bug	where	inheritance	arrows	for	sealed	classes	could	be	double-headed.	Fixed	a	bug	where	\r	would	be	printed	oddly	in	the	terminal.	Fixed	a	bug	which	could	cause	slowdown	while	a	Stride	editor	was	open.	5.3.0	20	March
2024	Changes	in	this	version:	Mac:	Fixed	splash	screen	not	showing	up	until	quite	late,	sped	up	startup	process,	fixed	application	not	getting	focus	after	load	Stopped	Terminal	showing	blank	stderr	pane	when	you	run	a	JavaFX	application	Added	JavaFX	doc	link	to	help	menu	Fixed	issue	with	same-day	commits	sometimes	being	sorted	wrong	in	Git
history	due	to	sorting	by	12-hour	clock	time	Fixed	Git	history	to	only	show	files	changed	in	that	commit	(rather	than	all	files	present	in	the	repository	then)	Some	slight	speed-ups	to	Java	editor	performance	Added	code	completion	for	local	variable	names	(incl	parameters,	for-each	loops	and	instanceof	vars)	Added	section	boundaries	in	the	terminals,
to	group	together	output	from	each	method	callm	and	added	tooltip	showing	the	method	call	that	produced	each	section	(even	if	you	aren’t	logging	method	calls)	Clear	the	stderr	pane	in	Terminal	on	each	method	call	Updated	the	Git	library	we	use	Changed	backspace	behaviour	after	if/else	in	Stride	to	only	remove	the	else,	not	the	whole	if	Fixed	a
bug	where	Stride	didn't	save	when	you	added/removed	a	default	clause	in	a	switch	frame	Fixed	a	bug	which	could	prevent	compiler	errors	being	shown	when	a	stale	class	file	was	present	Fixed	a	bug	where	BlueJ	would	endlessly	compile	blank	files	Changed	debugger	split	pane	to	be	3-way	Stopped	object	highlight	enlarging	as	you	step	through	code
Added	user-contributed	Chinese	translations	5.2.1	10	October	2023	A	full	list	of	bug	fixes	can	be	found	on	Github.	Some	highlights:	Fixed	the	Linux	installer	not	working	on	older	Ubuntu	and	Debian.	Fixed	the	generic	JAR	installer	not	working	outside	Linux.	Fixed	the	JavaFX	warning	not	being	suppressed	in	the	terminal	in	non-English	locales.	Fixed
issue	with	permits	clauses	not	being	parsed	correctly	when	after	an	extends	or	implements	clause,	and	messing	up	dependency	calculation.	5.2.0	20	June	2023	A	full	list	of	bug	fixes	can	be	found	on	Github.	Some	highlights:	Fixed	an	issue	on	Mac	where	double-clicking	in	Finder	to	open	a	project	would	load/focus	BlueJ	but	not	open	the	project.	Fixed	a
launch	crash	on	Ubuntu.	Fixed	a	bug	where	errors	on	the	last	line	of	a	Java	file	(often,	reached	end	of	file	while	parsing	after	a	missing	close	curly	bracket)	would	not	show	at	all.	Removed	annoying	warning	on	stdout	in	the	Terminal	when	running	JavaFX	programs.	You	can	now	focus	classes	in	the	class	diagram	by	typing	their	name	(e.g.	typing	"Tic"
will	focus	"TicketMachine").	Mac	is	now	packaged	differently,	as	a	DMG.	5.1.0a	27	October	2022	This	is	a	Mac-only	release	to	fix	the	issue	with	crashing	on	load	on	macOS	13	(Ventura).	5.1.0	20	September	2022	In	this	release:	BlueJ	now	runs	on	(and	requires)	Java/JavaFX	17.	Support	for	all	the	Java	17	language	features	has	been	added	to	the	Java
editor.	5.0.3	28	March	2022	In	this	release:	Many	different	accessibility	improvements,	especially	to	the	terminal,	codepad,	but	also	the	general	interface.	Compiler	errors	can	now	be	seen	in	a	list	pane	when	accessibility	mode	is	turned	on.	Fixed	a	bug	in	saving	the	password	for	Git	in	the	teamwork.	Various	small	editor	bug	fixes,	including	one	where
errors	would	sometimes	not	show	in	the	editor.	Added	System.in/out/err	to	the	code	completion	dialog	as	a	special	case.	Stopped	passing	-source	to	the	compiler	by	default	(this	now	allows	users	to	specify	--release).	Cut/copy	now	do	nothing	if	the	selection	is	empty	(previously	it	would	blank	the	clipboard).	Added	new	method	to	the	plugin	API.	5.0.2a
2	December	2021	This	is	a	Mac-only	release	to	address	a	crash	that	was	happened	on	MacOS	12	(Monterey).	All	other	operating	systems	should	continue	to	use	5.0.2.	5.0.2	6	August	2021	In	this	release:	Fixed	a	problem	where	BlueJ	would	crash	when	launching	on	some	Windows	machines.	Fixed	a	bug	where	on	Windows	JavaFX	menus	and	dialogs
would	not	work	correctly	in	user	programs.	Some	minor	bug	fixes	to	the	Java	and	Stride	editors.	Fixed	a	bug	where	sometimes	red	error	underlines	would	not	show	up	in	the	Java	editor.	Added	new	methods	to	the	plugin	API.	A	full	list	of	fixes	and	improvements	is	available	here.	5.0.1	30	April	2021	In	this	release:	Many	Java	editor	bug	fixes,	including
scrolling	while	drag-selecting,	tab	key	behaviour,	bracket	highlighting,	smooth	scrolling	on	Mac.	Added	feature	to	automatically	insert	the	closing	'}'	(configurable	in	the	preferences).	Fixed	ctrl-click	in	the	class	diagram	on	Mac.	Added	a	new	mechanism	to	support	opening	text	files	in	the	project	in	the	BlueJ	text	editor.	Switched	to	GDK	2	on	Linux	to
help	with	some	windowing	issues.	Fixed	issues	with	inspector	sizing	Fixed	some	issues	with	opening	editors	in	new	windows.	Fixed	a	few	bugs	with	breakpoint/step	mark	display	in	the	Java	editor.	Fixed	some	internal	errors	which	could	occur	on	compilation	and	cause	errors	not	to	be	shown.	A	full	list	of	fixes	and	improvements	is	available	here.	5.0.0
28	January	2021	In	this	release:	Rewrote	the	Java	editor	implementation	to	be	faster	and	more	robust.	Added	some	quick-fixes	to	the	Java	editor,	suggesting	things	like	adding	missing	imports.	Added	support	for	JUnit	5	and	switched	to	JUnit	5	by	default	(JUnit	4	is	still	supported	as	before).	Rewrote	the	extensions	API	to	work	with	the	new	editor.
Removed	the	deprecated	Subversion	support.	Bundled	the	JDK	on	Ubuntu	to	avoid	some	JavaFX	dependency	issues.	A	full	list	of	fixes	and	improvements	is	available	here.	4.2.2	4	October	2019	In	this	release:	Fixed	an	issue	with	an	extra	space	appearing	in	the	terminal	before	the	first	output.	Fixed	not	being	able	to	alter	the	preferences	for	the
Submitter	extension.	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	Subversion	support	is	now	deprecated	and	scheduled	for	removal.	Users	are	encouraged	to	migrate	to	using	Git	instead.	Note:	The	extensions	API	is	planned	to	change	soon,	so	extension	writers	will	need	to	make	changes.	Further	details	will	be	available	in	the	coming
months.	4.2.1	30	April	2019	In	this	release:	Fixed	a	startup	freeze	that	could	cause	BlueJ	to	be	forever	stuck	on	the	splash	screen	in	Windows.	Fixed	a	window	positioning	issue	that	could	cause	BlueJ	windows	to	appear	off-screen	(and	thus	seem	to	never	appear),	especially	on	Windows.	Stopped	the	"File	changed	on	disk"	dialog	from	popping	up	again
when	dismissed,	and	made	it	less	likely	to	appear	in	cases	which	might	be	caused	by	slow	network	storage.	Fixed	an	issue	with	not	recognising	JavaFX	installed	via	Ubuntu	package.	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	Subversion	support	is	now	deprecated.	Users	are	encouraged	to	migrate	to	using	Git	instead.	4.2.0	7
Feburary	2019	In	this	release:	Moved	to	Java	11.	This	means	that	BlueJ	now	requires	a	64-bit	operating	system.	Added	support	for	the	new	var	keyword	in	Java	10.	Fix	JUnit	BeforeClass/AfterClass	functionality.	Fix	various	small	editor	bugs.	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	Subversion	support	is	now	deprecated.	Users	are
encouraged	to	migrate	to	using	Git	instead.	4.1.4	29	October	2018	In	this	release:	Fixed	memory	leak	in	Java	editor.	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	This	is	likely	to	be	the	last	release	with	support	for	Subversion.	Users	are	encouraged	to	migrate	to	using	Git	instead.	Note:	See	Version	4.0.0	notes	for	supported	devices,
minimum	requirements	and	major	changes	since	Version	3.1.7	Note:	This	is	the	last	version	of	BlueJ	supporting	Java	8.	4.1.3	7	September	2018	In	this	release:	Fixed	various	issues	with	Git	support.	Many	other	minor	fixes.	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	See	Version	4.0.0	notes	for	supported	devices,	minimum
requirements	and	major	changes	since	Version	3.1.7	4.1.2	9	November	2017	Major	points:	Added:	Interactive	tutorial	(under	Help	->	Interactive	Tutorial).	Fixed:	Many	printing	problems,	especially	for	the	Java	editor.	Fixed:	Stale	bugs	displayed	in	editor	/	compile	command	ignored.	Fixed:	Git	support	issues,	especially	with	sub-packages	on	Windows.
A	full	list	of	fixes	and	improvements	is	available	here.	Note:	See	Version	4.0.0	notes	for	supported	devices,	minimum	requirements	and	major	changes	since	Version	3.1.7	4.1.1	18	September	2017	Major	fixes:	Fixed:	Occasional	exceptions/bugs	during	Java	file	editing.	Fixed:	Many	printing	problems.	Fixed:	Class	documentation	view	shows	blank	on
first	view.	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	See	Version	4.0.0	notes	for	supported	devices,	minimum	requirements	and	major	changes	since	Version	3.1.7	4.1.0	23	June	2017	Major	fixes:	Fixed:	Graphical	display	bug	could	cause	the	Java	editor	and	other	windows	(e.g.	Terminal)	to	turn	white	and	not	redraw	correctly.	Fixed:
Several	teamwork	issues	and	bugs	(especially	in	Git).	Fixed:	Several	controls	(such	as	buttons	in	editor)	could	appear	tiny	on	high-DPI	screens	on	Windows.	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	See	Version	4.0.0	notes	for	supported	devices,	minimum	requirements	and	major	changes	since	Version	3.1.7	4.0.1	28	March	2017
Major	fixes:	Fixed:	Closing	code	editor	kills	created	objects	and	clears	the	the	object	bench	Fixed:	After	switching	to	another	language,	Preferences	disappear	from	the	Mac	app	menu	and	some	keyboard	shortcuts	will	not	work	Fixed:	Debugger	is	not	stopping	on	some	Breakpoints	Fixed:	Backspace	doesn't	work	in	Terminal	on	Mac	Fixed:	Add
«stereotype»	markers	again	(«/»)	in	class	diagram	Fixed:	Lack	of	scrolling	with	lots	of	methods	either	in	unit	test,	Class	popup	or	Object	popup	menus	Fixed	(MacOS	X):	Projects	can't	be	opened	with	double	click	on	"package.bluej"	when	BlueJ	is	open	A	full	list	of	fixes	and	improvements	is	available	here.	Note:	See	Version	4.0.0	notes	for	supported
devices,	minimum	requirements	and	major	changes	since	Version	3.1.7	4.0.0	8	March	2017	This	is	a	major	new	release	of	BlueJ.	For	Java	programming,	it	adds	tabbed	editors,	automatic	error-checking,	adds	display	of	multiple	errors	and	has	most	of	the	BlueJ	interface	rewritten	into	JavaFX	(solving	many	HiDPI	issues	on	Windows)	while	also
providing	some	support	for	writing	JavaFX	applications	and	including	JavaFX	CSS	files	in	a	project.	BlueJ	4	also	adds	support	for	Stride,	our	frame-based	programming	language.	Projects	can	be	pure-Java	(as	in	BlueJ	3	and	earlier),	pure	Stride	or	a	mix	of	Java	and	Stride.	Support	is	providing	for	converting	between	Java	and	Stride.	BlueJ	4	adds
support	for	the	Git	version	control	system	(and	retains	support	for	Subversion).	Note:	BlueJ	4	requires	Java	8	(minimum	8u60)	and	JavaFX,	and	thus	is	currently	unsupported	on	older	Macs	and	on	Raspberry	Pi.	Support	for	CVS,	JavaME	projects,	and	applet	development	has	been	removed.	Some	extensions	may	no	longer	work	in	BlueJ	4.	3.1.7	23
February	2016	This	is	a	bug-fix	release	for	users	who	still	need	to	use	Java	6.	In	the	absence	of	any	major	issues,	it	will	be	the	last	version	of	BlueJ	which	will	work	with	Java	6.	List	of	fixes	and	improvements:	Fixed	problems	in	handling	SVN	projects.	Fixed	minor	issues	with	the	debugger.	Note	that	from	this	version,	to	work	around	bugs	in	the	SVNKit
library	that	BlueJ	uses	for	Subversion	support,	BlueJ	projects	which	are	shared	to	or	checked	out	from	a	repository	will	use	the	(old)	version	1.6	working	copy	format.	This	may	mean	that	some	external	tools	(including	recent	versions	of	the	subversion	command	line	client)	may	not	be	able	usable	with	BlueJ	projects.	Projects	checked	out	or	shared
using	BlueJ	version	3.1.6	used	the	version	1.7	working	copy	format	and	will	not	work	properly	(in	any	version	of	BlueJ)	due	to	SVNKit	bugs;	BlueJ	version	3.1.7	will	issue	a	warning	when	opening	such	a	project.	Note:	This	is	the	last	version	of	BlueJ	supporting	Java	7.	3.1.6	22	October	2015	Minor	bug	fixes	since	last	release.	This	will	be	the	last	version
of	BlueJ	which	will	work	with	Java	6.	List	of	fixes	and	improvements:	Fixed	windows	launcher	in	bundled	build	sometimes	asking	for	JDK	selection	or	reporting	that	no	suitable	JDK	could	be	found	Fix	command-+	and	command-=	keys	changing	font	size	in	terminal	on	Mac	Terminal,	code	pad	and	editor	font	sizes	are	now	always	synchronised
Subversion	support	now	works	with	new	Subversion	servers	and	repositories	Fixed	missing	semicolon	in	method	recording	in	the	terminal	Fixed	rare	editor	hang	when	entering	'}'	bracket	Fixed	drawing	of	dependency	arrows	in	class	diagram	so	they	avoid	crossing	3.1.5	29	March	2015	Support	for	Raspberry	Pi	2,	plus	various	bug	fixes	and	usability
improvements.	Bug	fixes	and	improvements:	Fixed:	Scope	highlighting	for	various	cases	Improved	detection	of	sudo	permissions	Added	Raspberry	Pi	configuration	tab	Fixed:	deleting	text	when	a	breakpoint	is	set	causes	an	exception	3.1.4	26	September	2014	Support	for	Java	8	language	features,	plus	various	bug	fixes	and	usability	improvements.
Bug	fixes	and	improvements:	Allow	"get"	to	put	package-private	members	on	the	object	bench	Uses	system	language	by	default	(if	a	translation	is	available)	Fixed:	Missing	class	name	in	project	documentation	(under	"inherited	methods")	Fixed:	Mac	OS	X,	projects	with	certain	characters	in	their	path	were	unusable	Fixed:	Subversion:	Can't	see
projects	available	for	checkout	Fixed	(version	3.1.4a	on	debian/raspbian	only):	Finding	java	JDK	in	latest	Raspbian.	3.1.1	27	January	2014	Various	bug	fixes	and	usability	improvements,	especially	for	screen	readers.	Bug	fixes:	Fixed:	class	type	parameters	not	shown	in	class	diagram	Fixed:	issues	with	highlighting,	pasting	and	deleting	text	in	codepad
Added:	message	displayed	when	no	project	open,	for	clarification	Fixed:	Inspectors	could	not	be	moved	by	dragging	them	on	Mac	OS	X	Fixed:	Debian	package	now	recognises	oracle-java7-jdk	package	3.1.0	10	June	2013	Fixes	for	a	few	Mac	bugs	and	the	Portuguese	language.	Improved	support	for	screen	readers.	Added	data	collection	research
project.	Bug	fixes:	Fixed:	Portuguese	language	selection	not	working	Fixed:	Mac	OS	X	asks	to	install	Java	when	using	JDK	7	Fixed:	JFileChooser	hangs	on	Mac	OS	X	Fixed:	Linux	does	not	recognise	new	Java	install	locations	3.0.9	22	February	2013	Interface	language	is	now	selectable	from	preferences	dialog.	Improvements	to	the	display	of	values	and
exceptions	in	the	codepad.	New	Mac	OS	X	release	which	bundles	JDK	7.	Bug	fixes:	Fixed:	Error	when	first	creating	class	documentation	on	a	project	on	a	network	share	Fixed:	Incremental	parsing	bug	(scope	highlighting	while	editing)	Fixed:	Debugger:	If	halted	while	reading	from	System.in,	call	stack	is	truncated	Fixed:	Debugger:	thread	controls
not	enabled	correctly	for	main	thread	Fixed:	Mishandling	of	ArrayList	in	codepad/object	bench	Fixed:	JUnit	4	support	treats	failures	as	errors	Fixed:	JUnit	4	tests	do	not	have	their	stack	trace	filtered	correctly	Fixed:	Dialog	hangs	with	generic	array	parameter	Fixed:	Disabling	auto-indent	glitches	the	closing	bracket	'}'	Fixed:	Auto-indent	doesn't	fire
after	entering	'{'	at	line	beginning	Fixed:	Interactive	invocation:	Javadoc	not	shown	for	methods	with	parameters	of	a	nested	parameterized	type	3.0.8	19	July	2012	Additions	to	the	extensions	API,	allowing	extensions	to	handling	drawing	the	package	graph.	Stack	traces	from	exceptions	(shown	in	the	terminal	window)	are	now	coloured	and	clickable.
Resolves	more	firewall	startup	issues.	More	flexibility	in	bluej.userHome	setting	(possible	to	specify	multiple	locations).	Bug	fixes:	Fixed:	Parsing	bug	with	parenthesized	identifiers	Fixed:	Parsing	bug	with	multiple	initializers	in	'for'	loop	Fixed:	Encoding	issues	with	output	to	System.err	Fixed:	Problems	with	compilation	of	some	files	Fixed:	"Maybe
you	meant	..."	misfires	when	there	is	more	than	one	method	call	on	a	line	Fixed:	Update	JDK	search	path	(Ubuntu/Debian)	3.0.7	7	February	2012	Resolves	firewall/network-adapter	startup	issues,	especially	on	Max	OS	X	10.7	(Lion).	Fixes	a	problem	with	inspecting	arrays	of	two	dimensions	or	more	(and	a	similar	problem	with	local	multidimensional
arrays	in	the	debugger).	Fixes	problem	with	non-ASCII	characters	in	interactive	method	calls.	Also	fixes	several	other	bugs.	Bug	fixes:	Fixed:	Class	icons	overlap	when	project	is	checked	out	without	project	files	Fixed:	Parser	problems	(bad	highlighting	and/or	editor	lockup)	caused	by	annotations	Fixed:	Varargs	parameters	not	treated	as	arrays	by
code	completion/error	message	enhancer	Fixed:	Search	highlights	wrong	if	file	modified	in	external	editor	3.0.6	11	November	2011	Resolves	issue	with	display	of	class	documentation	in	the	editor	when	running	BlueJ	with	Java	7.	Introduces	an	.msi	package	for	installation	on	Windows.	Also	fixes	several	bugs.	Bug	fixes:	Fixed:	Strange	"CUI"	icons	in
editor	window	(Mac	OS)	Fixed:	Missing	space	in	error	message	Fixed:	Windows	launcher	crashes	if	project	path	longer	than	50	characters	Fixed:	Codepad	rejects	some	syntactically	valid	expressions	that	have	non-void	types	Fixed:	Codepad	rejects	constant	integer	division	by	0	Fixed:	Auto-complete	does	not	always	properly	refresh	Fixed:	Comment
attached	to	method	drops	first	character	when	shown	in	call	dialog	Fixed:	Interactively	calling	instance	method	with	null	result	fails	to	show	result	dialog	Fixed:	Codepad	not	casting	some	values	correctly	Fixed:	Interactively	calling	varargs	method	with	reference	type	parameter	hangs	3.0.5	1	August	2011	Includes	support	for	Java	7	language
features.	JUnit	4	replaces	JUnit	3	for	test	support	(with	thanks	to	Patrick	Doran-Wu	at	the	University	of	Western	Australia).	Default	character	set	for	new	projects	changed	to	UTF-8	(better	support	for	non-English	characters).	Improved	method	call	recording	in	the	terminal.	Bug	fixes:	Fixed:	Compile	error	could	cause	compiler	to	hang	Fixed:	One	line
comments	should	not	affect	scope	colour	Fixed:	Various	small	scope	highlighting	issues	Fixed:	Various	minor	problems	in	the	code	pad	And	many	more	minor	bug	fixes.	3.0.4	25	November	2010	This	version	is	the	last	version	of	BlueJ	which	will	work	with	Java	5.	Bug	fixes:	Fixed:	Inspectors	not	updated	after	codepad	statement	execution	Fixed:
Resizing	result	inspector	doesn't	resize	result	field	display	Fixed:	Rare	incremental	parsing	problem	Fixed:	Can't	construct	object	with	type	parameters	Fixed:	Compile	and	code	completion	problems	with	code	that	extends	Swing	classes	Fixed:	Scope	highlighting	broken	when	inserting	inner	classes	Fixed:	Auto-layout	sometimes	inserts	odd	line
breaks	3.0.3	19	October	2010	Includes	a	Slovak	translation,	and	enables	assertions	by	default.	Adds	an	editor	function	to	add	a	javadoc	comment	to	the	current	method.	Bug	fixes:	Fixed:	Inheritance	arrow	not	drawn	between	classes	that	aren't	in	the	default	package	Fixed:	Some	expressions	generate	"not	a	statement"	error	in	the	codepad	Fixed:
Extensions	preferences	do	not	show	the	preferences	for	the	last	extension	Fixed:	Superclass	changes	during	editing	are	not	reflected	in	code	completion	Fixed:	Code	completion	on	arrays	does	not	show	clone()	method	Fixed:	Protected	methods	of	other	classes	can	show	up	in	code	completion	even	if	they	can't	be	called	Fixed:	Code	completion	shows
"access$000"	method	when	used	immediately	after	compilation	Fixed:	Code	completion	fails	on	arrays	of	primitive	types	Fixed:	Protected	methods	from	grandparent	do	not	shown	in	code	completion	Fixed:	NullPointerException	when	adding/removing	dependency	arrows,	when	editor	is	in	documentation	view	Fixed:	"Rebuild	package"	can	crash	with
ConcurrentModificationException	if	class	name	changed	Fixed:	It	should	not	be	allowed	to	draw	inheritance	arrows	to/from	Enums	Fixed:	Code	completion	throws	UnsupportedOperationException	in	some	cases	Fixed:	Array	variables	declared	in	codepad	don't	work	if	array	declarators	follow	variable	name	Fixed:	Expressions	involving	primitive-type
field	access	can	cause	compiler	error	in	codepad	Fixed:	Printed	source	code	line	numbers	are	offset	by	1	Fixed:	Code	completion	on	List	expression	fails	Fixed:	Static	method	call	dialog	sometimes	displays	"null"	instead	of	class	name	Fixed:	Windows:	Using	enter	key	to	close	method	call	dialog	causes	result	inspector	to	close	immediately	3.0.2	25
August	2010	Bug	fixes:	Fixed:	Incorrect/unhelpful	compiler	error	messages	in	the	codepad	Fixed:	Using	.length	on	arrays	fails	in	the	codepad	Fixed:	Teamwork/Subversion:	Sharing	a	project	containing	packages	fails	with	an	error	message	Fixed:	Last	character	of	bluej.vm.args	setting	is	ignored	Fixed:	Compiler	hangs	when	calling	non-existing
method	from	some	classes	Fixed:	Parser	failure	on	Enum	constants	with	bodies	Fixed:	Inspect	doesn't	work	with	array	references	3.0.1	8	July	2010	Bug	fixes:	Fixed:	Class	templates	for	some	languages	(eg.	Czech)	were	corrupted	in	Windows	installation	Fixed:	Drawing	"implements"	arrows	between	interfaces	does	not	work	properly	Fixed:	Debian
package	puts	libraries	in	/usr/bin/bluejlib	instead	of	/usr/share/bluej	Fixed:	Cannot	re-create	removed	class	Fixed:	Calling	non-existant	method	from	an	inner	class	hangs	compiler	Fixed:	Java	ME	midlet	execution	fails	when	BlueJ	uses	Java	6	Fixed:	Scope	doesn't	repaint	if	you	de-indent	a	method	which	has	a	class	variable	before	it	Fixed:	No	comments
shown	in	call	dialog	when	using	certain	parameters	Fixed:	HTML	should	have	been	generated	in	UTF-8	Fixed:	Some	expressions	in	the	code	pad	are	broken	Fixed:	Inspecting	an	object	with	a	non-null	"Class"	field	doesn't	work	Fixed:	Crash	when	"\u"	sequence	entered	in	editor	Fixed:	BlueJ	doesn't	highlight	all	Java	keywords	Fixed:	Autolayout	doesn't
respect	tab	size	setting	Fixed:	Code	completion	within	inner	classes	not	working	3.0.0	30	May	2010	Summary	of	most	important	changes:	Editor:	Introduced	code	completion	editor	Editor:	Added	editor	navigation	view	Editor:	Added	editor	auto-indent	function	Editor:	Introduced	scope	highlighting	Editor:	Improved	find/replace	functionality	Look	and
feel	changes	Editor:	Improved	matching	bracket	highlight	Double-click	on	project.bluej	file	launches	BlueJ	and	opens	project	Added	context	menu	(right-click)	in	editor	Javadoc	shown	for	calls	to	methods	with	inner	classes	as	parameters	'Print'	option	added	in	terminal	'Paste'	function	added	in	terminal	Printing	options	saved	across	sessions	Source
code	printing	can	now	include	line	numbers	and	syntax	colouring	OK/Cancel	button	ordering	now	follows	OS	custom	on	Mac	OS	Editor:	word	selection	improved	Menu	item	added	for	"Reset	Java	Virtual	Machine"	Many	bugs	fixes	and	small	improvements.	3.0.0	preview	2	11	May	2010	Bug	fixes	and	speed	improvements.	3.0.0	preview	8	March	2010
First	feature	additions	for	version	3.0.0	2.5.3	8	October	2009	Summary	of	most	important	changes:	Fixed:	Java	ME	Deply	button	somtimes	active	for	non-ME	projects	Fixed:	Codepad	and	method	invocation	fail	for	Java	ME	with	"cannot	find	symbol	-	class	Map"	Subversion	support	now	allows	access	to	repositories	via	the	"https:"	protocol	Fixed:	Can't
close	preferences	dialog	when	toggling	"show	testing	tools"	in	an	empty	package	frame	Fixed:	BlueJ	fails	to	start	with	Java	5	64bit	on	Mac	OS	Fixed:	"Rebuild	package"	when	unsaved	class	with	changed	name	exists	causes	ConcurrentModificationException	Fixed:	On	Windows,	installation	in	a	location	with	a	non-ascii	character	in	the	path	causes
launch	failure	Fixed:	Subversion	merge	conflicts	cause	"update"	dialog	to	spin	forever	(NullPointerException)	Fixed:	Applet	viewer	hangs	on	printlns	when	run	from	BlueJ	Fixed:	"Save	as"	dialog	gives	bad	default	name	Fixed:	Teamwork	status	window	stays	open	after	project	is	closed	2.5.2	21	August	2009	Summary	of	most	important	changes:
Improved	the	installer	so	that	BlueJ	can	be	installed	without	adminstrator	access	rights	on	Windows.	Double-click	on	a	bluej	project	file	will	launch	it	in	BlueJ	(on	every	OS	but	Mac	OS	you	have	to	manually	associate	the	file	type	with	BlueJ).	Added	keyboard	shortcuts	to	increase	and	decrease	font	size	in	the	editor	(and	terminal).	Fixed:	Debugger
window	could	hang	the	system.	Fixed:	Editing	actions	throw	exceptions	when	in	interface	view.	Fixed:	Typing	"5;"	int	to	the	codepad	hangs	the	codepad.	Fixed:	Dependency	in	binary-not	argument	not	detected.	2.5.1	30	April	2009	Apart	from	the	changes	listed	below,	this	version	includes	functionality	to	send	some	anonymous	information	(BlueJ
version,	Java	version,	Operating	System,	interface	language	etc)	to	the	BlueJ	maintainers,	to	help	with	development	planning.	This	can	be	disabled	by	adding	a	"bluej.uid=private"	setting	to	your	bluej.properties	file.	Added	some	control	over	the	date	formatting	by	the	Submitter	extension	Includes	newer	version	of	Svnkit	library,	should	resolve	some
subversion	issues	Fixed:	"New	Project",	then	selecting	an	existing	project	gave	a	bad	error	message	Improved	cursor	behaviour	in	editor	slightly	Fixed:	BlueJ	launcher	(Windows)	sometimes	gave	a	"MSVCR71.dll	not	found"	error	Fixed:	BlueJ	launcher	(Windows)	fails	when	bluej.windows.vm.args	changed	Fixed:	Java	ME	projects	fail	to	open	on	non-
Windows	OSes	Fixed:	Couldn't	open	jar	file	via	"Open	non-BlueJ"	2.5.0	7	October	2008	Summary	of	most	important	changes:	Added	support	for	developing	J2ME	applications.	Team	work	functionality	now	works	with	Subversion	(SVN),	as	well	as	CVS.	JUnit	test	recording	significantly	improved	(records	more	interactions).	Improved	window	handling.
Installer	improvements.	Numerous	bug	fixes.	BlueJ	now	requires	Java	5	or	newer.	Older	Java	versions	are	no	longer	supported.	2.2.1	17	December	2007	Summary	of	most	important	changes:	Leaving	breakpoints	over	compile,	where	possible.	Added	test	class	creation	for	applets.	Adaptations	for	MacOS	10.5	(Leopard).	User	preference	directory
location	is	now	configurable.	Fix	bug	with	teamwork	tools	and	packages.	Make	code	pad	font	user-definable.	Some	other	minor	bug	fixes.	2.2.0	6	July	2007	Summary	of	most	important	changes:	Added	explicit	group	work	support	(CVS	based).	Check	for	(and	prevent)	recursive	save	(save	of	project	in	own	project	dir)	Changed	default	browser	on
Linux/Unix	systems	to	Firefox	Improvements	of	submitter	extension:	added	https	protocol	and	secure	SSL/TLS	mail	transfer	Print	problems	fixed	Compiler	bugs	(compiler	not	terminating	in	certain	situations)	fixed	Constructor	with	type	parameter	now	works	correctly	Possible	freeze	problem	fixed	Comments	in	code	pad	fixed	File	handling	in	uni	tests
improved	Freeze	fixed	related	to	self-referential	object	on	bench	Javadoc	location	can	be	changed	with	bluej.defs	setting	Class	called	'Object'	no	longer	confuses	BlueJ	Compile	dependency	chacking	improved	varargs	in	interactive	constructor	call	now	work	Improved	handling	of	objects	of	private	inner	classes	'userlib'	and	'extensions'	directory	can	be
specified	in	bluej.defs	Printing	'\u000C'	clears	terminal	2.1.3	26	April	2006	Summary	of	most	important	changes:	Minor	bug	fixes,	including	Shared	memory	transport	fixed	(Windows,	as	a	failover	for	aggressive	firewalls)	Terminal	encoding	fixed	(defaults	to	system	encoding	now)	Terminal	encoding	can	now	be	set	with	the	bluej.terminal.encoding
property	in	bluej.defs	Fixed:	Mnemonics	and	accelerators	don't	work	with	escaped	unicode	sequences	Fixed:	README.TXT	not	saved	on	quit	Fixed:	Debugger	doesn't	detect	when	user	steps	past	end	of	called	method	Fixed:	Run	Applet	dialog	does	not	resize	gracefully	Fixed:	BlueJ	becomes	unresponsive	when	program	produces	a	lot	of	terminal
output	Fixed:	Leaving	type	argument	blank	for	constructor	calls	doesn't	work	2.1.2	10	February	2006	Summary	of	most	important	changes:	Minor	bug	fixes,	including	Fixed	bug	with	display	of	parameter	names	and	method	comments.	Fixed	bug	in	specification	of	VM	location	in	bluej.defs.	Bug	fix	in	extension	API:	compiler	warnings	are	now
propagated	to	listeners.	2.1.1	3	January	2006	Summary	of	most	important	changes:	Minor	bug	fixes,	most	notably	a	bug	that	caused	BlueJ	to	hang	if	source	files	ended	in	a	comment	without	a	terminating	newline	character.	2.1.0	25	November	2005	Summary	of	most	important	changes:	The	codepad	now	has	support	for	declaring	local	variables	which
retain	their	value	between	invocations.	improvements	for	generics	handling	in	codepad	lots	of	bug	fixes!	2.0.5	17	May	2005	Summary	of	most	important	changes:	BlueJ	now	runs	on	Max	OS	X	10.4	(Tiger)	improvements	for	generics	handling	in	codepad	clean	up	inspectors	on	VM	reset	various	small	codepad	fixes	unaccessible	methods	from	other
packages	were	shown	in	menu	-	fixed	supplied	fix	for	projects	on	UNC	paths	can	now	open	jar	files	and	zip	files	fix	for	browser	opening	on	Windows	ME	2.0.4	17	January	2005	Summary	of	most	important	changes:	fixed	bug	that	led	to	problems	when	installed	in	locations	with	space	in	path	name	2.0.3	20	December	2004	Summary	of	most	important
changes:	#733	-	hash	in	project	path	causes	problems	("Main	method	does	not	appear	in	context	menu").	#781	-	keyword	"new"	highlighting	#791	-	inspection	of	generic	field	containing	object	of	non-immediately-derived	type	#793/#795	-	java	1.5.0	compile-time	errors	not	verbose	enough	#800	-	exception	thrown	in	code	pad	causes	internal	BlueJ
error	#838	-	Japanese	dialogs	in	wrong	encoding	#847	-	auto	project	open	at	startup	is	not	robust	#848	-	BlueJ	main	window	now	received	focus	at	startup	(MacOS)	#786	-	Terminal	bug	clearing	error	output	2.0.2	22	October	2004	Summary	of	most	important	changes:	display	of	stack	traces	when	throwing	exceptions	restored	stack	trace	display	for
unit	test	failures	fixed	systemLibrary	property	in	bluej.defs	fixed	again	use	of	alt/option	key	on	MacOS	fixed	addition	of	memory	based	VM	communication	protocol	(VM	startup	without	tcp/ip)	and	corresponding	bluej.defs	property	2.0.1	4	October	2004	Summary	of	most	important	changes:	invoking	'main'	could	hang	virtual	machine	-	fixed	debugger
highlighting	not	updated	correctly	-	fixed	main	method	sometimes	executes	twice	-	fixed	VM	sometimes	does	not	shot	down	correctly	after	reset	-	fixed	2.0.0	16	September	2004	Summary	of	most	important	changes:	added	support	for	J2SE	5.0	(generics,	enums,	etc)	new	diagram	look	new	diagram	handling	functions:	multi-selection,	dragging/resizing
of	multiple	classes	context	menus	for	all	diagram	entities	(including	arrows)	keyboard	navigation	of	class	diagram	and	object	bench	menu	mnemonics	improved	extension	API	improved	Java	text	evaluation	via	code	pad	improved	editor	indentation	execution	speed	improvements	(using	VM	optimisation	by	default)	Undo	button	affects	inactive	window.
applets	don't	get	classpath	jar	bundle	does	not	contain	user	lib	jars	Class	inheritance	arrows	disappear	when	saving	a	project	'Get'	public	variable	does	not	work	in	class	inspector	Object	bench	is	not	painted	correctly	Object	bench	scrolls	inconsistently	when	removing	objects	Add	support	for	compile	options	in	bluej.defs	Classes	not	initialized	before
inspection	BlueJ	cant	start	with	testing	tools	enabled	Splitpane	is	not	appropriately	split	remember	preferred	editor	window	position	Remove	command	Unable	to	create	virtual	machine	result	inspector	return	types	are	wrong	Result	inspector	should	be	redesigned	(show	method	call)	key	support	for	graph	editing	inspectors	not	properly	updated
Change	the	look	of	classes	being	moved.	Change	display	of	to	null	remote	vm	process	does	not	quit	when	project	closed	too	q...	Mnemonics	default	applet	template	does	not	compile	Compile	errors	not	shown	properly	Implementation	arrows	not	selectable	test	result	display	should	let	you	jump	the	line	where	an...	Close	terminal	window	with	its
project	clear	input	buffer	at	execution	start	Multiple	dialogs	when	deleting	package	BlueJ	opens	file	twice	click	in	selectino	in	editor	does	not	unselect	Javadoc	for	the	Java	API	doesn't	work	Unicode	character	not	supported	in	java	source	code	BlueJ	fails	to	launch	browser	ESC	should	close	dialogs	extra	javascript	in	javadoc	interface	view	Main	thread

never	terminates	if	another	thread	tries	to	j...	The	auto-indent	should	work	in	both	directions	There	should	be	an	opposite	to	TAB	key	indention	1.3.5	11	December	2003	Summary	of	most	important	changes:	execution	speed	improvements	(using	VM	optimisation	by	default)	JUnit	testing:	auto-generated	code	improved	auto-open	of	last	used	projects
on	startup	System.exit	now	restarts	VM	improvements	to	extension	API	standard	preference	handling	on	MacOS	number	of	'recent	projects'	user	definable	startup	without	additional	DOS	window	on	MS	Windows	class	diagram	supports	multiple	selection	changed	inspector	look	better	error	messages	easier	addition	of	user	libraries	through	use	of
'userlib'	directory	colours	for	different	class	types	user	definable	added	missing	label	in	some	foreign	languages	'VM	optimize'	now	available	in	preferences	new	menu	shortcuts	for	'page	setup',	'generate	documentation'	text	input	wirh	multiple	projects	now	works	(one	terminal	per	project)	editor	maintains	last	display	state	(interface/implementation)
between	sessions	each	package	now	has	separate	README	note	JApplet	class	now	used	by	default	when	creating	applets	instead	of	Applet	1.3.0	7	August	2003	Summary	of	most	important	changes:	more	robust	debugger/execution	archtitecture	extension	API	added	submission	extension	added	unit	test	support	added	improved	diagram	printing	user
definable	scaling	of	diagram	printout	now	using	jdk	1.4.1	on	MacOS	if	installed	Aqua	interface	improvements	on	MacOS	web	browser	start	problem	on	Win98/ME	resloved	EXIT_ON_CLOSE	option	bug	fixed	some	documentation	generation	bugs	fixed	new	interface	languages	available:	Portuguese	source	print	font	size	user	definable	printing	form
feed	character	(unicode	0x000C)	now	clears	terminal	terminal	gets	automatically	cleared	on	recompile	inspection	of	static	fields	now	in	class	menu	compiler	warning	display	improved	1.2.2	16	October	2002	Summary	of	most	important	changes:	freeze	bug	with	jdk1.4.1	and	debugger	fixed	'open	recent'	option	added	to	Project	menu	support	for	'stand-
out'	comments	System.err	output	in	terminal	improved	project	documentation	with	spaces	in	path	works	now	evaluation	of	expressions	added	user	interface	in	italian	added	1.2.1	1	August	2002	Summary	of	most	important	changes:	bug	with	frequent	access	of	floppy	drive	fixed	bracket	matching	in	editor	implemented	bluej.exe	accepts	parameters
System.err	output	now	directed	to	BlueJ	terminal	'auto-clear'	option	in	bluej	terminal	new	interface	languages:	Chinese,	Czech,	Afrikaans	1.2.0	4	April	2002	Summary	of	most	important	changes:	326,	335	-	support	of	jdk	1.4	added	285	-	return	key	now	activated	OK	button	in	parameter	dialogs	330	-	project	documentation	fixed	with	jdk	1.4	343	-
improved	auto-indentation	in	editor	347	-	last	used	project	directory	saved	across	sessions	000	-	added	windows	installer	1.1.6	16	January	2002	Summary	of	most	important	changes:	166	-	debugger	now	displays	static	variables	in	a	separate	list	166	-	debugger	displays	variables	when	stopped	in	static	method	225	-	projects	can	include	project-specific
libraries	261	-	Frames/JFrames	automatically	removed	when	objects	are	removed	235	-	help	menu	items	can	be	added	by	users	267	-	terminal	font	size	user	definable	276	-	javadoc	can	be	configured	to	include	private	methods	295	-	automatic	creation	of	crash	recovery	files;	optional	creation	of	backup	files	(thanks	to	David	R.	Musicant
(dmusican@mathcs.carleton.edu)	for	implementing	these	features)	241	-	proper	find/replace	implemented	in	editor	250	-	optional	line	number	display	in	editor	300	-	added	block	indent	function	to	editor	303	-	method	template	for	"insert-method"	template	user	definable	310	-	japanese	localisation	added	(interface	,	etc.	in	japanese);	thanks	to	Runrun
275	-	use	Command	key	instead	of	CTRL	as	menu	shortcut	on	MacOS	277	-	bug	fix	on	MacOS:	Show	Terminal/Debugger	could	crash	system	298	-	extended	latin	characters	(umlaut,	accented	characters,	etc)	handled	correctly	by	parser	1.1.5	24	September	2001	Summary	of	most	important	changes:	240	-	documentation	needs	update	(1.3	req)	12	-
font	size	in	editor	not	user	definable	234	-	Screen	maximize	247	-	cannot	create	jar	file	in	project	directory	248	-	Some	applet	classes	are	not	recognised	when	project	is	loaded	252	-	Exported	jar	files	containing	packages	unusable	under	Windows	255	-	jikes	error	messages	aren't	shown	191	-	Unexpected	characters	in	input	cause	exception	1.1.4	14
June	2001	requires	JDK	1.3	or	newer	uses	new	(JDK1.3)	compiler	implementation	can	get	arrays	and	array	element	to	the	object	bench	local	variables	of	static	methods	now	shown	(bug	fix)	new	class	templates	can	be	added	class	templates	can	be	located	in	arbitrary	directory	"user	home"	can	be	specified	display	of	exceptions	in	library	classes
improved	bug	fixes	with	editor	key	definitions	new	editor	functions	for	cutting/copying/moving	lines	and	words	optional	soft	TABs	(tabbing	with	spaces)	in	the	editor	various	bug	fixes	1.1.3	29	March	2001	can	now	create	objects	of	library	types	(eg.	String)	and	call	static	methods	breakpoints	in	main	did	not	work	-	fixed	editor	tab	size	definable	in
bluej.defs	file	syntax	colours	user	definable	bug	with	interface	views	and	multiple	drives	on	Win32	fixed	can	now	re-display	project	documentation	without	re-generating	debugger	"terminate"	fixed	object	inspection	from	debugger	fixed	export	for	packages	with	sub-packages	fixed	1.1.2	9	February	2001	added	support	for	installation	on	MacOS	X
interface	view	of	classes	changed	to	display	javadoc	format	in	BlueJ	editor	inspection	of	elements	of	large	arrays	fixed	System.exit	now	terminates	all	threads	bugs	with	parsing	explicit	positive	ints	fixed	more	compiler	error	message	help	texts	added	"describe"	function	(CTRL-D)	in	editor	fixed	(had	bug	on	Windows)	static	data	now	gets	reinitialised
with	each	call	to	"main(String[])"	1.1.1	1	September	2000	applets	are	now	properly	recognised	even	if	not	directly	inheriting	from	"Applet"	editor	key	bindings	are	now	properly	saved	between	sessions	(JDK	1.3	only)	"spinning	barber	pole	problem"	(infinitelyspinning	barber	pole)	on	Linux	fixed	classes	in	the	project	are	now	recognised	when	source	is
not	there	(only	.class	file).	This	may	be	used	to	supply	use-only	classes	to	students	without	source	bug	with	incorrect	project	closing	fixed	class	positioning	when	adding	class	from	file	corrected	long	error	messages	in	editor	now	wrap	over	two	lines.	Pressing	the	"?"	button	shows	the	complete	message	(together	with	an	explanation)	default	argument
for	"public	static	void	main(String[])"	changed	from	null	to	{	}	to	ensure	compatibility	with	DOS	editors	have	icons	when	minimised	1.1	4	August	2000	UML-style	notation	for	the	class	diagram	support	for	named	and	nested	packages	improved	import	of	non-BlueJ	packages	terminal	text	can	be	saved	or	copied	editor	key	bindings	can	be	changed		(jdk
1.3	only)	editor	font	can	be	changed	"export"	function	to	create	standard	Java	packages	and	executable	jar	files	projects	have	project	comments	(README	note)	javadoc	support	added	for	single	classes	and	whole	projects	cascading	menus	for	large	menus	the	debugger	can	now	be	used	with	swing	applications	classes	can	be	renamed	in	the	class
source	1.0.3	23	May	2000	static	methods	on	abstract	can	be	called	now	bug	with	calling	methods	after	using	"Get"	has	been	fixed	bug	with	printing	TABs	has	been	fixed	printing	the	class	diagram	has	been	improved	class	names	can	now	be	changed	by	changing	the	name	in	the	source	1.0.2	8	March	2000	printing	class	sources	has	been
fixed/improved	editor	views	have	been	improved	bug	fixed:	end	of	long	lines	was	not	displyed	properly	bug	fix:	System.exit()	did	not	work	correctly	new	editor	functions:	"indent",	"break-and-indent",	"comment",	"uncomment"	editor	key	bindings	can	be	changed	(but	are	not	yet	saved	-	they	are	lost	on	exit)	a	default	source	directory	can	be	defined	in
the	"bluej.defs"	file.	This	serves	as	a	starting	point	for	the	file	chooser	install	support	for	jdk	1.3	added	1.0.1	17	January	2000	installation	support	for	Linux	jdk	1.2.2	added	added	preferences	dialogue	editor	font	size	can	be	changed	non-BlueJ	packages	can	now	be	opened	in	BlueJ	(with	automatic	dependency	analysis).	So	far,	only	packages	without
nested	packages	are	supported	"package..."	line	automatically	fixed	when	importing	classes	System.exit()	now	works	for	graphical	applications	bug	fixed	in	inspection	of	large	arrays	default	parameter	"null"	added	for	static	void	main	calls	support	for	internationalisation	(so	far,	German	is	the	only	language	file	supplied	besides	English)	1.0	23	August
1999	dependencies	(eg	inheritance	relationships)	are	automatically	entered	into	the	source	code	if	entered	graphically	several	bugs	in	the	debugger	have	been	fixed	0.9.7	11	August	1999	text	terminal	reimplemented;	fixed	many	problems	terminal	comes	to	front	on	output	inspect	for	local	variables	in	debugger	implemented	dependency	display
improved:	changes	in	code	immediately	reflected	in	diagram	0.9.5	7	July	1999	Implementation	changed	to	run	on	Java	2	platform	Debugger	implemented.	Includes	breakpoints,	single	stepping,	variable	inspection	Execution	implementation	changed	to	use	JDI	-	promises	significant	improvements	in	stability	and	reliability	Applets	supported
(development	and	viewing	in	applet	viewer	and	browser)	Dependency	analysis	fixed	-	works	correctly	now	Many	editor	improvements	Help	button	for	compiler	error	messages	and	exceptions	Array	inspection	implemented	Exception	handling	(reporting)	improved	0.9.2a	12	May	1999	One	bug	fix:	bluej	could	not	be	started	on	Unix	systems	without	a
command	line	argument.	0.9.2	5	May	1999	internal	implementation	improvements	some	editor	improvements	(key	shortcut,	tabs,	...)	editor	function	"key	bindings"	implemented	-	lists	all	user	functions	and	their	bindings	many	bug	fixes	0.9.1	28	April	1999	printing	of	source	files	implemented	cleaned	up	object	popup	menus	classes	can	no	longer	be
moved	out	of	the	screen	removed	bug	in	removing	arrows	backup	package	file	now	named	"bluej.pkh"	instead	of	"bluej.pkg~"	to	avoid	Windows	copying	bug	0.9.0	15	March	1999	handling	of	exceptions:	exceptions	in	user	programs	are	caught	and	displayed	properly	System.exit()	can	now	be	used	normally	bug	fix:	empty	string	as	method	result	now
returned	properly	bug	fix:	user	defined	object	as	method	result	now	shown	correctly	bug	fixes:	names	of	objects	on	bench:	now	ensures	that	names	are	unique	and	valid	bug	fix:	layout	of	object	bench	after	"get"	and	"remove"	fixed	bug	fix:	objects	could	not	be	used	properly	after	put	on	the	object	bench	through	the	"Get"	operation	in	the	inspect
window.	This	works	now.	0.8.9	2	March	1999	Removing	of	classes	has	been	implemented	In	the	installer,	a	path	to	the	java	executable	can	be	specified	and	will	be	used	In	multi-user	system,	where	the	BlueJ	home	directory	is	not	writable	to	users,	the	system	should	now	work	much	better.	The	Save	As	function	has	been	implemented.	Many	other	bug
fixes...	A	free	Java	Development	Environment	designed	for	beginners,	used	by	millions	worldwide.	Find	out	more...	"One	of	my	favourite	IDEs	out	there	is	BlueJ"—	James	Gosling,	creator	of	Java.	Created	by	Supported	by	Download	and	Install	Version	5.5.0,	released	3	June	2025	(Many	feature	improvements,	see	more)	Note:	BlueJ	requires	a	64-bit
operating	system,	which	95+%	of	users	will	have.For	32-bit	operating	systems,	download	BlueJ	4.1.4	instead.	"Objects	First	with	Java:	A	Practical	Introduction	Using	BlueJ"	is	a	textbook	co-written	by	the	developers	of	BlueJ	and	has	sold	hundreds	of	thousands	of	copies	worldwide.	Our	free	Blueroom	website	offers	teaching	resources	and	the	chance
to	engage	with	other	educators	using	BlueJ	around	the	world.	Tutorials	and	reference	materials	for	working	in	BlueJ.	We	have	several	extensions	available	that	add	to	BlueJ's	base	functionality.

fecamu
http://activesites.atiks.org/files/95564d0b-bc19-4792-bc32-06877e184d4c.pdf
http://dhins.com/testingsites/advantage_aviation/assets/media/file/1f4a2022-18f9-4ab8-bcea-7b5d2551ff8e.pdf
what	is	static	electricity	in	simple	words
unit	9	progress	check	mcq	ap	chem
horrible	bosses	2	ending	explained
hebuga
https://krygina40.ru/UserFiles/File/62081109377.pdf

https://vedatpazarlama.com/userfiles/file/vejubabi_pakenu_suwelure_tererot_sanulitulomelu.pdf
http://activesites.atiks.org/files/95564d0b-bc19-4792-bc32-06877e184d4c.pdf
http://dhins.com/testingsites/advantage_aviation/assets/media/file/1f4a2022-18f9-4ab8-bcea-7b5d2551ff8e.pdf
http://indiefliks.com/fck_user_files/file/b6a677ef-3459-4260-81e3-df12b52b2b79.pdf
http://dunajecbiala.pl/upload/File/41442744733.pdf
http://sentai.cc/data/file/20250710_114657_723.pdf
http://hoanganhphuong.com/media/file/99746325272.pdf
https://krygina40.ru/UserFiles/File/62081109377.pdf

