
	

https://wojiweposawuba.maxudijuz.com/661809468543488831635938809499015596724467?nilufosokikazutozolasenabazewonipedilogavinudurerakivavopawibejerosawaregak=lumazogupefiselesojabapamotarukuwafapifopamesovibabafabirakabuwifepobivelelomaselasowanuduvutumuxamiluwuvomijenivaxodagasenupunovanojiledorijedisevokakibawudamupewusirizavirapanokuwawavulimeguxerogawumaxiwid&utm_kwd=get+pdf+page+count&begevesogokivexikafidilavoxamow=naradunezixiluzinenewawetevitisekodifinewakibovilijetewepirelizuvodepemadoxaxokamevavedamifezidusovipivofotorupegolorilijefuxuladubexefuru

Many	hours	have	I	searched	for	a	fast	and	easy,	but	mostly	accurate,	way	to	get	the	number	of	pages	in	a	PDF	document.	Since	I	work	for	a	graphic	printing	and	reproduction	company	that	works	a	lot	with	PDFs,	the	number	of	pages	in	a	document	must	be	precisely	known	before	they	are	processed.	PDF	documents	come	from	many	different	clients,
so	they	aren't	generated	with	the	same	application	and/or	don't	use	the	same	compression	method.	Here	are	some	of	the	answers	I	found	insufficient	or	simply	NOT	working:	Using	Imagick	(a	PHP	extension)	Imagick	requires	a	lot	of	installation,	apache	needs	to	restart,	and	when	I	finally	had	it	working,	it	took	amazingly	long	to	process	(2-3	minutes
per	document)	and	it	always	returned	1	page	in	every	document	(haven't	seen	a	working	copy	of	Imagick	so	far),	so	I	threw	it	away.	That	was	with	both	the	getNumberImages()	and	identifyImage()	methods.	Using	FPDI	(a	PHP	library)	FPDI	is	easy	to	use	and	install	(just	extract	files	and	call	a	PHP	script),	BUT	many	of	the	compression	techniques	are
not	supported	by	FPDI.	It	then	returns	an	error:	FPDF	error:	This	document	(test_1.pdf)	probably	uses	a	compression	technique	which	is	not	supported	by	the	free	parser	shipped	with	FPDI.	Opening	a	stream	and	search	with	a	regular	expression:	This	opens	the	PDF	file	in	a	stream	and	searches	for	some	kind	of	string,	containing	the	pagecount	or
something	similar.	$f	=	"test1.pdf";	$stream	=	fopen($f,	"r");	$content	=	fread	($stream,	filesize($f));	if(!$stream	||	!$content)	return	0;	$count	=	0;	//	Regular	Expressions	found	by	Googling	(all	linked	to	SO	answers):	$regex	=	"/\/Count\s+(\d+)/";	$regex2	=	"/\/Page\W*(\d+)/";	$regex3	=	"/\/N\s+(\d+)/";	if(preg_match_all($regex,	$content,	$matches))
$count	=	max($matches);	return	$count;	/\/Count\s+(\d+)/	(looks	for	/Count)	doesn't	work	because	only	a	few	documents	have	the	parameter	/Count	inside,	so	most	of	the	time	it	doesn't	return	anything.	Source.	/\/Page\W*(\d+)/	(looks	for	/Page)	doesn't	get	the	number	of	pages,	mostly	contains	some	other	data.	Source.	/\/N\s+(\d+)/	(looks	for	/N)
doesn't	work	either,	as	the	documents	can	contain	multiple	values	of	/N	;	most,	if	not	all,	not	containing	the	pagecount.	Source.	See	the	answer	below	April	25,	2017	at	10:49	PM	by	Dr.	Drang	I	deal	with	lots	of	PDFs	at	work,	and	sometimes	I	want	to	report	on	the	total	number	of	pages	I’ve	reviewed	on	a	given	project.	I’ve	used	various	ad	hoc	methods
to	collect	and	sum	up	these	page	counts	but	have	never	come	up	with	an	automated	technique.	When	there’s	deadline	pressure	to	get	a	report	out,	there’s	no	time—or	it	seems	like	there’s	no	time—to	put	together	a	decent	automated	solution.	Today	I	decided	to	make	time.	There	are	several	ways	to	get	the	number	of	pages	in	a	PDF.	You	can	open	it
in	Preview	and	see	the	page	count	in	the	title	bar.	You	can	do	a	Get	Info	on	the	file.	If	you	have	PDFtk	installed,	you	can	run	it	from	the	command	line	using	the	dump_data	operation.	That’ll	get	you	a	crapload	of	info	on	the	file	(over	2,000	lines	for	the	file	I’m	using	as	an	example),	but	you	can	limit	it	to	just	the	number	of	pages	by	filtering	the	output.1
$	pdftk	File\	3.pdf	dump_data	|	grep	NumberOfPages	NumberOfPages:	420	I	decided	to	use	one	of	the	command-line	tools	Apple	provides	to	access	the	metadata	used	by	Spotlight.	These	tools	all	begin	with	“md,”	and	the	one	that	can	output	the	page	count	is	mdls	(metadata	list).	Like	pdftk,	mdls	will,	by	default,	spit	out	a	lot	of	information	on	a	file.	$
mdls	File\	3.pdf	_kMDItemOwnerUserID	=	501	kMDItemContentCreationDate	=	2017-04-26	01:29:28	+0000	kMDItemContentModificationDate	=	2017-04-26	01:29:42	+0000	kMDItemContentType	=	"com.adobe.pdf"	kMDItemContentTypeTree	=	("com.adobe.pdf",	"public.item",	"com.adobe.pdf",	"public.data",	"public.composite-content",
"public.content")	kMDItemDateAdded	=	2017-04-26	01:29:28	+0000	kMDItemDisplayName	=	"File	3.pdf"	kMDItemEncodingApplications	=	("Pixel	Translations	(PIXPDF	58.5.1.1422)")	kMDItemFSContentChangeDate	=	2017-04-26	01:29:42	+0000	kMDItemFSCreationDate	=	2017-04-26	01:29:28	+0000	kMDItemFSCreatorCode	=	""
kMDItemFSFinderFlags	=	0	kMDItemFSHasCustomIcon	=	(null)	kMDItemFSInvisible	=	0	kMDItemFSIsExtensionHidden	=	0	kMDItemFSIsStationery	=	(null)	kMDItemFSLabel	=	0	kMDItemFSName	=	"File	3.pdf"	kMDItemFSNodeCount	=	(null)	kMDItemFSOwnerGroupID	=	20	kMDItemFSOwnerUserID	=	501	kMDItemFSSize	=	41753844
kMDItemFSTypeCode	=	""	kMDItemKind	=	"Portable	Document	Format	(PDF)"	kMDItemLastUsedDate	=	2017-04-26	01:42:08	+0000	kMDItemLogicalSize	=	41753844	kMDItemNumberOfPages	=	420	kMDItemPageHeight	=	807.36	kMDItemPageWidth	=	606	kMDItemPhysicalSize	=	41754624	kMDItemSecurityMethod	=	"None"	kMDItemUseCount
=	1	kMDItemUsedDates	=	("2017-04-25	05:00:00	+0000")	kMDItemVersion	=	"1.4"	The	only	line	we	want	is	the	one	that	starts	with	kMDItemNumberOfPages.	We	can	limit	the	output	to	just	that	line	by	using	the	-name	option	and	get	rid	of	the	label	with	the	-raw	option:	$	mdls	-name	kMDItemNumberOfPages	-raw	File\	3.pdf	420	The	thing	about	-
raw	is	that	it	doesn’t	put	a	newline	after	the	output,	which	is	sometimes	good	and	sometimes	bad.	We’ll	deal	with	that	in	a	bit.	Now	we’re	ready	to	build	a	shell	script,	called	pdfpages,	that	does	the	following:	Prints	a	usage	string	if	you	don’t	give	it	any	arguments.	Prints	just	the	number	of	pages	in	the	file	if	you	give	it	one	argument.	Prints	the
number	of	pages	and	the	name	for	each	file	and	the	grand	total	of	pages	if	you	give	it	more	than	one	argument.	To	demonstrate:	$	pdfpages	Usage:	pdfpages	$	pdfpages	File\	3.pdf	420	$	pdfpages	*.pdf	330	File	1.pdf	532	File	2.pdf	420	File	3.pdf	1282	Total	Here’s	the	source	code	for	pdfpages:	bash:	1:	#!/bin/bash	2:	3:	if	[$#	==	0];	then	4:	echo
"Usage:	pdfpages	"	5:	elif	[$#	==	1];	then	6:	echo	`mdls	-name	kMDItemNumberOfPages	-raw	"$1"`	7:	else	8:	sum=0	9:	for	f	in	"$@";	do	10:	count=`mdls	-name	kMDItemNumberOfPages	-raw	"$f"`	11:	echo	-e	"$count\t$f"	12:	((sum	+=	count))	13:	done	14:	echo	-e	"$sum\tTotal"	15:	fi	Recall	that	$#	provides	the	number	of	arguments	to	the	script,
so	Lines	3	and	5	test	for	the	no	argument	and	one	argument	conditions,	respectively.	Line	4	is	the	usage	message	printed	if	there	are	no	arguments.	Line	6	runs	when	there’s	one	argument	and	is	basically	what	we	showed	above.	Putting	the	mdls	command	in	backticks	runs	it	and	feeds	the	output	to	echo,	which	adds	the	trailing	newline	and	prevents
the	next	command	prompt	from	appearing	on	the	same	line	as	the	output.2	Lines	8–14	handle	the	case	of	more	than	one	argument.	We	start	by	initializing	the	running	sum	in	Line	8.	Then	we	loop	through	all	the	arguments	with	the	for	on	Line	9.	For	each	file,	Line	10	runs	the	mdls	command	and	puts	the	output	in	the	variable	count.	Line	11	prints	the
page	count	and	file	name	for	the	current	file,	and	Line	12	increments	the	running	sum.3	When	the	loop	is	finished,	Line	14	prints	out	the	total.	Throughout	the	script,	please	note	the	use	of	double	quotes	around	the	$@,	$1,	and	$f	variables.	This	keeps	the	script	from	shitting	the	bed	when	file	paths	include	spaces.	This	is	about	as	complicated	a	shell
script	as	I	would	ever	want	to	write.	If	I	find	myself	wanting	to	add	features,	I’ll	probably	rewrite	it	as	a	Python	script	using	the	subprocess	module	to	run	the	mdls	command.	After	writing	pdfpages,	I	wondered	how	it	would	have	worked	on	a	older	project	in	which	I	gave	up	trying	to	count	all	the	PDF	pages	I	was	sent	because	there	were	just	too	many
spread	over	too	many	files.	Getting	the	number	of	PDF	files	(just	over	1,000)	in	a	nested	folder	structure	was	easy	using	standard	tools:	find	.	-iname	*.pdf	|	wc	-l	Now	I	could	get	the	number	of	pages	in	those	files	with	find	.	-iname	*.pdf	-print0	|	xargs	-0	pdfpages	It	chugged	away	for	about	half	a	minute	and	told	me	I’d	been	given	nearly	16,000	pages
to	review.	Maybe	it	was	better	I	didn’t	know.	The	PDF	or	Portable	Document	Format	is	one	of	the	most	popular	file	formats	that	is	used	for	documents	to	share	it	through	email	or	other	ways.	One	of	the	main	reasons	why	this	format	is	preferred	is	that	users	can	set	restrictions	by	using	it.	A	user	who	creates	a	PDF	file	can	prevent	others	from	editing
it	or	copying	content	from	it	with	a	password.	A	user	can	even	protect	the	file	with	a	password	so	no	one	can	open	it	without	his	permission.	It	is	even	possible	to	restrict	printing	so	one	can	only	view	the	file	and	not	print	it.	A	common	problem	is	when	you	have	a	restricted	file	where	printing	is	disabled.	You	may	have	to	print	the	file	as	it	has
important	content.	If	you	have	to	print	such	a	file	and	were	wondering	how	to	do	it,	we	will	tell	you	in	this	guide	on	how	to	print	protected	PDF	files.	Part	1:	How	to	Enable	Print	Option	in	PDF	without	Knowing	Password	There	are	different	ways	by	which	you	can	enable	the	print	option	in	a	PDF	file	without	the	password.	Let’s	look	at	how	to	enable
print	option	in	PDF	using	two	different	ways	through	utilities.	1.1	Using	Online	Tool	to	Enable	Print	Option	in	PDF	It	is	possible	to	enable	print	in	PDF	by	using	a	utility	that	is	available	online.	One	of	these	utilities	is	iLovePDF.	This	free	online	utility	helps	you	carry	out	various	operations	on	PDF	files.	You	can	convert	PDF	files	to	other	formats,	merge
files,	split	them,	and	unlock	PDF	files.	Let	us	see	how	to	enable	print	option	in	PDF	by	unlocking	the	file	using	iLovePDF.	The	following	steps	explain	how	to	print	protected	PDF	using	this	utility:	Step	1:	The	first	thing	to	do	is	to	visit	the	official	website	of	iLovePDF.	Step	2:	Scroll	down	the	home	page	and	search	for	the	option	Unlock	PDF.	You	can	use
this	option	to	unlock	the	PDF	file	thus	allowing	you	to	enable	printing.	Step	3:	You	will	see	a	button	asking	you	to	Select	PDF	Files.	You	can	click	the	button	to	upload	PDF	files	from	your	computer	or	you	can	directly	drop	your	PDF	files.	You	can	upload	PDF	files	from	Google	Drive	or	Dropbox.	Step	4:	After	uploading,	click	the	red	button	Unlock	PDF
to	start	the	process.Select	the	file	and	click	OK.	Step	5:	After	finishing,	the	unlocked	PDF	file	will	be	downloaded	automatically	or	you	can	download	it	manually.	As	you	can	see,	the	method	is	simple.	However,	it	has	some	disadvantages:	This	is	an	online	utility.	If	you	do	not	have	Internet	connection,	you	cannot	use	it.	The	file	is	saved	on	this	utility’s
website.	The	site	claims	not	to	store	files	but	there	is	an	element	of	risk	involved,	particularly	if	you	are	trying	to	unlock	confidential	documents.	There	is	always	the	possibility	of	hacking	when	your	data	is	on	a	website.	1.2	Using	Third-Party	Software	to	Enable	Print	Option	in	PDF	A	unique	and	innovative	solution	to	deal	with	problematic	PDF	files	is
Passper	for	PDF.	This	software	allows	you	to	easily	and	effectively	unlock	PDF	files.	You	can	remove	all	restrictions	placed	on	the	file,	including	print	restrictions.	Removing	restrictions	on	PDF	files	is	easy	and	super	fast,	it	takes	hardly	3	seconds	to	get	it	done.	What	we	can	expect	from	Passper	for	PDF:	All	restrictions	on	PDF	files	including	edit,
copy,	print	and	comment	can	be	removed	by	using	Passper	for	PDF.	It	is	an	easy-to-use	program.	It	only	takes	3	steps	to	complete	the	removal	process.	It	will	only	take	about	3	seconds	to	remove	restrictions	on	PDF	files.	Additionally,	Passper	for	PDF	can	be	used	to	recover	password	with	4	attack	modes	when	you	forgot	it.	The	tool	is	available	in	trial
version.	You	can	free	download	it	to	test	whether	your	PDF	files	are	supportable	or	not.	Free	Download	Buy	Now	We	explain	how	to	enable	print	option	in	PDF	by	using	Passper	for	PDF.	The	following	are	the	steps	involved:	Step	1	Once	open	the	software,	it	gives	you	two	options	to:	Recover	passwords	and	Remove	Restrictions.	To	enable	print	in	PDF
files	please	choose	Remove	Restrictions.	Step	2	You	will	be	asked	to	choose	a	PDF	file	that	is	protected	and	for	which	you	want	to	remove	the	restrictions.	Select	the	file	from	your	system	and	click	OK.	The	name	of	the	file	selected	is	displayed.	If	you	made	a	mistake	while	selecting,	you	can	use	the	back	button	to	redo	this	step.	Step	3	Click	the
Remove	button	to	begin	the	process.	The	software	is	so	fast	that	it	can	accomplish	this	job	within	just	1	to	2	seconds.	If	you	know	the	password	that	used	to	restricted	PDF	files,	then	you	can	use	Adobe	Acrobat.	But	you	should	make	sure	that	the	Adobe	Acrobat	you	use	is	pro	version.	Now,	you	can	follow	the	steps	below	to	remove	the	print	restriction
on	your	PDF	file:	Step	1:	Open	the	restricted	PDF	file	on	Adobe	Acrobat	Pro	version.	Step	2:	Click	on	the	padlock	located	in	the	left	panel.	Click	Permission	Details	to	bring	up	the	Document	Properties	window.	Step	3:	Click	on	the	Change	Settings	button.	It	will	require	you	to	enter	a	permissions	password.	Step	4:	Now,	you	can	change	the	permission
settings	for	your	PDF	file.	The	above	three	methods	explained	how	to	enable	print	option	in	PDF.	Now	that	you	have	seen	the	three	options,	it	is	time	to	do	a	comparison	to	understand	the	differences	between	the	three	methods	and	which	of	these	three	methods	are	more	advantageous.	iLovePDF	Passper	for	PDF	Adobe	Acrobat	Ease	to	use	simple
simple	medium	Internet	Needed	Safe	or	Not	not	safe	very	safe	safe	Need	Password	to	Remove	Restrictions	Crack	Password	From	the	above,	we	can	see	that	Passper	for	PDF	has	multiple	advantages.	Apart	from	removing	print	restrictions,	the	software	has	an	option	to	recover	lost	passwords.	The	multiple	features	make	it	a	preferred	tool	to	use.	I	am
a	student.	I	created	one	dissertation	and	saved	it	in	PDF	format	with	a	password.	However,	I	lost	the	password	to	open	it.	To	get	rid	of	the	protection	I	tried	many	free	solutions	found	online,	but	failed.	Then	I	downloaded	Passper	for	PDF	to	test	it.	I	have	to	say	that	it	is	really	easy	to	use.	I	paid	for	the	Passper	for	PDF	1-year	plan	and	it	never
disappointed	me.	If	you	are	a	student	like	me,	I	recommend	it!	By	Jason	M.	Contreras	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow
the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions
under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or
limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,
transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests
the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not
have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you
use	the	material.	Working	with	PDFs	in	Python	is	easy	with	the	PdfReader	class.	One	useful	method	is	getNumPages.	It	helps	you	count	the	number	of	pages	in	a	PDF	file.This	article	explains	how	to	use	getNumPages.	It	also	includes	examples	and	tips	for	beginners.	Let's	dive	in!What	is	PdfReader.getNumPages?The	getNumPages	method	is	part	of
the	PdfReader	class.	It	returns	the	total	number	of	pages	in	a	PDF	file.	This	is	useful	for	tasks	like	splitting	or	analyzing	PDFs.To	use	it,	you	need	the	PyPDF2	library.	If	you	don't	have	it,	check	out	our	guide	on	how	to	install	Python	PdfReader.How	to	Use	PdfReader.getNumPagesFirst,	install	the	PyPDF2	library.	Then,	import	the	PdfReader	class.	Open
a	PDF	file	and	call	getNumPages	to	count	its	pages.Here's	an	example:	#	Import	PdfReader	from	PyPDF2	from	PyPDF2	import	PdfReader	#	Open	the	PDF	file	reader	=	PdfReader("example.pdf")	#	Get	the	number	of	pages	num_pages	=	reader.getNumPages()	#	Print	the	result	print(f"The	PDF	has	{num_pages}	pages.")	The	PDF	has	10	pages.	In	this
example,	the	code	reads	a	PDF	file	named	example.pdf.	It	then	prints	the	total	number	of	pages.Common	Errors	and	FixesSometimes,	you	might	encounter	errors.	For	example,	you	could	see	"No	module	named	PdfReader".	This	means	the	PyPDF2	library	is	not	installed.To	fix	this,	install	the	library	using	pip.	For	more	details,	read	our	guide	on	fixing
the	"No	module	named	PdfReader"	error.Practical	Use	CasesThe	getNumPages	method	is	helpful	in	many	scenarios.	For	example,	you	can	use	it	to	split	a	PDF	into	smaller	files.	Or,	you	can	check	if	a	PDF	meets	a	page	limit.If	you	need	to	extract	specific	pages,	check	out	our	guide	on	using	PdfReader.getPage.ConclusionThe	PdfReader.getNumPages
method	is	a	simple	yet	powerful	tool.	It	helps	you	count	pages	in	a	PDF	file	quickly.	With	this	knowledge,	you	can	handle	PDFs	more	efficiently	in	Python.Remember	to	install	the	PyPDF2	library	and	handle	errors	properly.	Happy	coding!	Many	hours	have	I	searched	for	a	fast	and	easy,	but	mostly	accurate,	way	to	get	the	number	of	pages	in	a	PDF
document.	Since	I	work	for	a	graphic	printing	and	reproduction	company	that	works	a	lot	with	PDFs,	the	number	of	pages	in	a	document	must	be	precisely	known	before	they	are	processed.	PDF	documents	come	from	many	different	clients,	so	they	aren't	generated	with	the	same	application	and/or	don't	use	the	same	compression	method.	Here	are
some	of	the	answers	I	found	insufficient	or	simply	NOT	working:	Using	Imagick	(a	PHP	extension)	Imagick	requires	a	lot	of	installation,	apache	needs	to	restart,	and	when	I	finally	had	it	working,	it	took	amazingly	long	to	process	(2-3	minutes	per	document)	and	it	always	returned	1	page	in	every	document	(haven't	seen	a	working	copy	of	Imagick	so
far),	so	I	threw	it	away.	That	was	with	both	the	getNumberImages()	and	identifyImage()	methods.	Using	FPDI	(a	PHP	library)	FPDI	is	easy	to	use	and	install	(just	extract	files	and	call	a	PHP	script),	BUT	many	of	the	compression	techniques	are	not	supported	by	FPDI.	It	then	returns	an	error:	FPDF	error:	This	document	(test_1.pdf)	probably	uses	a
compression	technique	which	is	not	supported	by	the	free	parser	shipped	with	FPDI.	Opening	a	stream	and	search	with	a	regular	expression:	This	opens	the	PDF	file	in	a	stream	and	searches	for	some	kind	of	string,	containing	the	pagecount	or	something	similar.	$f	=	"test1.pdf";	$stream	=	fopen($f,	"r");	$content	=	fread	($stream,	filesize($f));
if(!$stream	||	!$content)	return	0;	$count	=	0;	//	Regular	Expressions	found	by	Googling	(all	linked	to	SO	answers):	$regex	=	"/\/Count\s+(\d+)/";	$regex2	=	"/\/Page\W*(\d+)/";	$regex3	=	"/\/N\s+(\d+)/";	if(preg_match_all($regex,	$content,	$matches))	$count	=	max($matches);	return	$count;	/\/Count\s+(\d+)/	(looks	for	/Count)	doesn't	work	because
only	a	few	documents	have	the	parameter	/Count	inside,	so	most	of	the	time	it	doesn't	return	anything.	Source.	/\/Page\W*(\d+)/	(looks	for	/Page)	doesn't	get	the	number	of	pages,	mostly	contains	some	other	data.	Source.	/\/N\s+(\d+)/	(looks	for	/N)	doesn't	work	either,	as	the	documents	can	contain	multiple	values	of	/N	;	most,	if	not	all,	not	containing
the	pagecount.	Source.	See	the	answer	below	This	post	shows	how	to	count	Pages	in	multiple	PDF	files	in	Windows	11/10.	While	there	are	so	many	best	free	PDF	readers	available	to	use,	counting	the	total	number	of	pages	present	in	different	PDF	documents	is	not	possible	with	most	such	tools	as	either	only	one	PDF	can	be	opened	at	a	time	or	there
is	no	such	option	present.	So,	if	you	ever	need	to	check	how	many	pages	are	there	in	your	PDF	collection,	then	the	PDF	page	counter	options	covered	below	will	be	helpful.	Whether	you	have	scanned	PDF	files	or	password-protected	PDFs,	the	page	count	for	all	the	PDF	documents	can	be	done	with	ease.How	to	count	pages	in	multiple	PDF	files
together	in	Windows	11/10To	count	pages	in	multiple	PDF	files	together	on	a	Windows	11/10	computer,	use	the	following	options:Use	a	web	browserUse	PDFMate	Free	PDF	MergerUse	PDF	Count.Let’s	have	a	look	at	all	these	options.1]	Use	a	web	browserThis	is	a	very	simple	option	to	use	and	doesn’t	require	any	extra	tool	to	install	on	your	PC.	All
the	popular	browsers	(Edge,	Chrome,	Firefox,	Opera,	etc.)	support	PDF	files	and	when	you	open	a	PDF	file	in	a	browser,	the	total	number	of	pages	is	visible	on	the	PDF	toolbar.	Depending	upon	the	browser	you	use,	the	page	count	is	visible	in	the	middle	section	or	left	section	of	the	toolbar.So,	what	you	need	to	do	is	open	PDFs	in	different	tabs	of	your
web	browser	and	the	page	count	for	each	PDF	will	be	visible	to	you.	You	can	also	check	the	page	count	for	a	PDF	using	Document	Properties.	And	then,	you	can	make	a	total	of	all	the	pages	and	note	it	somewhere	for	later	use.In	a	similar	way,	you	can	also	use	Adobe	Acrobat	Reader	DC	(free)	to	count	PDF	pages.2]	PDFMate	Free	PDF
MergerPDFMate	Free	PDF	Merger	tool,	as	the	name	indicates,	helps	to	combine	or	merge	PDF	files	to	create	a	single	PDF	document.	But	this	freeware	can	also	be	used	to	encrypt	PDF,	convert	PNG,	TIF,	and	JPG	to	PDF,	extract	pages	from	PDF,	and	count	pages	of	multiple	PDF	files	at	once.You	can	get	the	setup	file	of	PDFMate	Free	PDF	Merger
software	from	pdfmate.com.	Launch	the	software	after	installation	and	then	you	can	add	a	folder	containing	your	PDF	documents	or	use	Add	Files	button	to	add	the	selected	files.After	adding	the	PDF	files,	you	can	check	the	Total	Page	column	which	will	show	the	page	count	for	each	PDF	in	the	list.	The	tool	works	well,	but	it	fails	to	load	a	password-
protected	PDF	file.Related:	How	to	see	the	word	count	in	Word	and	PowerPoint3]	PDF	CountPDF	Count	(or	TTFA	PDF	Page	Counter)	is	also	a	free	software	and	one	of	the	best	options	to	count	pages	in	multiple	PDF	files	together.	With	this	option,	you	don’t	have	to	open	PDF	files.	Just	add	them	to	its	interface	using	Add	Files	button	and	the	total	page
count	for	all	PDF	documents	will	be	visible	on	the	top	left	part.	Also,	you	can	add	as	many	PDF	files	as	you	want.	If	a	PDF	is	password	protected,	then	you	can	also	provide	the	password	to	enter	that	PDF	in	the	list.Apart	from	this,	it	also	provides	a	page	count	for	each	individual	PDF	separately.	You	will	see	the	document	name	and	page	count	for	that
PDF	document.	The	option	to	export	the	total	page	count	as	TXT	and	Excel	files	(XLSX	or	XLS)	is	also	there.	To	use	this	tool,	download	it	from	softpedia.com.That’s	all!Also	read:	How	to	sign	a	PDF	using	free	software	or	online	toolsHow	do	I	combine	PDF	files	in	Windows	11?There	are	multiple	ways	to	combine	PDF	files	into	one	PDF	for	free	on	a
Windows	11/10	PC.	You	can	use	some	free	online	PDF	merger	tools	or	free	PDF	merger	software	like	PDFMate	Free	PDF	Merger	and	PDF24	Creator.	A	free	Microsoft	Store	app	called	PDF	Merger	&	Splitter	can	also	be	used	to	create	a	single	PDF	file	from	multiple	PDFs.Can	you	print	multiple	PDFs	at	once	in	Windows	11?Yes,	you	can	print	multiple
PDFs	at	once	in	Windows	11.	In	fact,	you	can	do	the	same	on	Windows	10	and	other	versions	of	Windows	as	well.	All	you	need	to	do	is	to	choose	your	desired	PDF	files	and	do	the	usual	for	printing.	It	prints	one	PDF	and	puts	others	in	queue.Read	next:	How	to	extract	Tables	from	PDF	documents.	Many	hours	have	I	searched	for	a	fast	and	easy,	but
mostly	accurate,	way	to	get	the	number	of	pages	in	a	PDF	document.	Since	I	work	for	a	graphic	printing	and	reproduction	company	that	works	a	lot	with	PDFs,	the	number	of	pages	in	a	document	must	be	precisely	known	before	they	are	processed.	PDF	documents	come	from	many	different	clients,	so	they	aren't	generated	with	the	same	application
and/or	don't	use	the	same	compression	method.	Here	are	some	of	the	answers	I	found	insufficient	or	simply	NOT	working:	Using	Imagick	(a	PHP	extension)	Imagick	requires	a	lot	of	installation,	apache	needs	to	restart,	and	when	I	finally	had	it	working,	it	took	amazingly	long	to	process	(2-3	minutes	per	document)	and	it	always	returned	1	page	in
every	document	(haven't	seen	a	working	copy	of	Imagick	so	far),	so	I	threw	it	away.	That	was	with	both	the	getNumberImages()	and	identifyImage()	methods.	Using	FPDI	(a	PHP	library)	FPDI	is	easy	to	use	and	install	(just	extract	files	and	call	a	PHP	script),	BUT	many	of	the	compression	techniques	are	not	supported	by	FPDI.	It	then	returns	an	error:
FPDF	error:	This	document	(test_1.pdf)	probably	uses	a	compression	technique	which	is	not	supported	by	the	free	parser	shipped	with	FPDI.	Opening	a	stream	and	search	with	a	regular	expression:	This	opens	the	PDF	file	in	a	stream	and	searches	for	some	kind	of	string,	containing	the	pagecount	or	something	similar.	$f	=	"test1.pdf";	$stream	=
fopen($f,	"r");	$content	=	fread	($stream,	filesize($f));	if(!$stream	||	!$content)	return	0;	$count	=	0;	//	Regular	Expressions	found	by	Googling	(all	linked	to	SO	answers):	$regex	=	"/\/Count\s+(\d+)/";	$regex2	=	"/\/Page\W*(\d+)/";	$regex3	=	"/\/N\s+(\d+)/";	if(preg_match_all($regex,	$content,	$matches))	$count	=	max($matches);	return	$count;
/\/Count\s+(\d+)/	(looks	for	/Count)	doesn't	work	because	only	a	few	documents	have	the	parameter	/Count	inside,	so	most	of	the	time	it	doesn't	return	anything.	Source.	/\/Page\W*(\d+)/	(looks	for	/Page)	doesn't	get	the	number	of	pages,	mostly	contains	some	other	data.	Source.	/\/N\s+(\d+)/	(looks	for	/N)	doesn't	work	either,	as	the	documents	can
contain	multiple	values	of	/N	;	most,	if	not	all,	not	containing	the	pagecount.	Source.	See	the	answer	below	Many	hours	have	I	searched	for	a	fast	and	easy,	but	mostly	accurate,	way	to	get	the	number	of	pages	in	a	PDF	document.	Since	I	work	for	a	graphic	printing	and	reproduction	company	that	works	a	lot	with	PDFs,	the	number	of	pages	in	a
document	must	be	precisely	known	before	they	are	processed.	PDF	documents	come	from	many	different	clients,	so	they	aren't	generated	with	the	same	application	and/or	don't	use	the	same	compression	method.	Here	are	some	of	the	answers	I	found	insufficient	or	simply	NOT	working:	Using	Imagick	(a	PHP	extension)	Imagick	requires	a	lot	of
installation,	apache	needs	to	restart,	and	when	I	finally	had	it	working,	it	took	amazingly	long	to	process	(2-3	minutes	per	document)	and	it	always	returned	1	page	in	every	document	(haven't	seen	a	working	copy	of	Imagick	so	far),	so	I	threw	it	away.	That	was	with	both	the	getNumberImages()	and	identifyImage()	methods.	Using	FPDI	(a	PHP	library)
FPDI	is	easy	to	use	and	install	(just	extract	files	and	call	a	PHP	script),	BUT	many	of	the	compression	techniques	are	not	supported	by	FPDI.	It	then	returns	an	error:	FPDF	error:	This	document	(test_1.pdf)	probably	uses	a	compression	technique	which	is	not	supported	by	the	free	parser	shipped	with	FPDI.	Opening	a	stream	and	search	with	a	regular
expression:	This	opens	the	PDF	file	in	a	stream	and	searches	for	some	kind	of	string,	containing	the	pagecount	or	something	similar.	$f	=	"test1.pdf";	$stream	=	fopen($f,	"r");	$content	=	fread	($stream,	filesize($f));	if(!$stream	||	!$content)	return	0;	$count	=	0;	//	Regular	Expressions	found	by	Googling	(all	linked	to	SO	answers):	$regex	=
"/\/Count\s+(\d+)/";	$regex2	=	"/\/Page\W*(\d+)/";	$regex3	=	"/\/N\s+(\d+)/";	if(preg_match_all($regex,	$content,	$matches))	$count	=	max($matches);	return	$count;	/\/Count\s+(\d+)/	(looks	for	/Count)	doesn't	work	because	only	a	few	documents	have	the	parameter	/Count	inside,	so	most	of	the	time	it	doesn't	return	anything.	Source.	/\/Page\W*
(\d+)/	(looks	for	/Page)	doesn't	get	the	number	of	pages,	mostly	contains	some	other	data.	Source.	/\/N\s+(\d+)/	(looks	for	/N)	doesn't	work	either,	as	the	documents	can	contain	multiple	values	of	/N	;	most,	if	not	all,	not	containing	the	pagecount.	Source.	See	the	answer	below	Photo	by	CURVD®	on	UnsplashWhen	working	with	PDFs,	you	might	need
to	extract	specific	information	about	the	pages,	such	as	the	page	count,	size,	rotation,	orientation,	or	other	attributes.	This	article	will	walk	you	through	the	process	of	extracting	page	information	from	PDFs	using	Python.	It	covers	the	following	topics:Python	Module	to	Extract	Page	Information	from	PDFsWe	will	use	the	Spire.PDF	for	Python	module
to	extract	page	information	from	PDF	documents.	This	module	provides	a	comprehensive	set	of	functions	that	allow	us	to	create,	read,	edit,	and	convert	PDF	documents	within	Python	applications.We	need	to	install	Spire.PDF	for	Python	from	PyPI	by	running	the	following	command	in	the	terminal:pip	install	Spire.PdfOnce	the	module	is	installed,	we
can	use	it	to	easily	extract	various	page	information	from	PDF	documents.	Let’s	get	started!Extract	Page	Count	from	PDF	with	PythonThe	number	of	pages	in	a	PDF	is	a	fundamental	piece	of	information,	especially	for	document	processing	tasks	such	as	pagination,	splitting,	or	rearranging.Getting	the	number	of	pages	in	a	PDF	can	be	easily	done
through	two	steps:Open	the	PDF	document	through	the	PdfDocument	class.Get	the	number	of	pages	in	the	document	through	the	PdfDocument.Pages.Count	property.The	following	code	example	shows	how	to	get	the	total	number	of	pages	of	a	PDF	document	using	Python	and	Spire.PDF	for	Python:from	spire.pdf.common	import	*from	spire.pdf
import	*#	Open	the	PDF	documentpdf	=	PdfDocument("Sample.pdf")#	Get	the	total	number	of	pagespage_count	=	pdf.Pages.Count#	Print	the	page	countprint(f"The	PDF	has	{page_count}	pages.")pdf.Close()Extract	Page	Size	from	PDF	with	PythonPage	size	refers	to	the	dimensions	(width	and	height)	of	a	PDF	page,	typically	measured	in	points,
where	1	point	equals	1/72	inch.	Extracting	the	page	size	is	crucial	for	ensuring	consistent	formatting,	printing,	and	display	across	various	documents.To	retrieve	the	width	and	height	of	a	PDF	page,	you	can	utilize	the	PdfPageBase.Size.Width	and	PdfPageBase.Size.Height	properties.	Below	is	a	simple	example	demonstrating	how	to	accomplish
this:from	spire.pdf.common	import	*from	spire.pdf	import	*#	Open	the	PDF	documentpdf	=	PdfDocument("Sample.pdf")#	Get	the	first	page	by	its	index	(zero-based)page	=	pdf.Pages[0]#	Get	the	width	and	height	of	the	first	pagewidth	=	page.Size.Widthheight	=	page.Size.Height#	Print	the	dimensions	of	the	first	pageprint(f	print(f"The	first	page
dimensions	are	{width}	points	x	{height}	points.")pdf.Close()Key	Points:The	extracted	page	dimensions	are	in	points	by	default.You	can	use	the	PdfUnitConvertor	class	provided	by	Spire.PDF	for	Python	to	convert	between	points	and	other	units	of	measurement,	such	as	inches,	pixels,	centimeters,	and	millimeters.	Here	is	how	you	can	achieve	the
conversion:#	Create	a	PdfUnitConvertor	objectconverter	=	PdfUnitConvertor()#	Convert	points	to	inchesinch_value	=	converter.ConvertUnits(point_value,	PdfGraphicsUnit.Point,	PdfGraphicsUnit.Inch)#	Convert	points	to	pixelspixel_value	=	converter.ConvertUnits(point_value,	PdfGraphicsUnit.Point,	PdfGraphicsUnit.Pixel)#	Convert	points	to
centimeterscentimeter_value	=	converter.ConvertUnits(point_value,	PdfGraphicsUnit.Point,	PdfGraphicsUnit.Centimeter)#	Convert	points	to	millimetersmillimeter_value	=	converter.ConvertUnits(point_value,	PdfGraphicsUnit.Point,	PdfGraphicsUnit.Millimeter)Extract	Page	Rotation	from	PDF	with	PythonSome	pages	in	a	PDF	may	be	rotated	to	a
specific	angle,	such	as	0°,	90°,	180°,	or	270°.	Knowing	this	information	is	crucial	when	working	with	documents	that	require	specific	orientation	adjustments	for	proper	viewing	or	printing.To	retrieve	the	rotation	angle	of	a	PDF	page,	you	can	utilize	the	PdfPageBase.Rotation	property.	Here’s	a	simple	example	demonstrating	how	you	can	extract	the
rotation	angle	of	a	PDF	page	using	Python	and	Spire.PDF	for	Python:from	spire.pdf.common	import	*from	spire.pdf	import	*#	Open	the	PDF	documentpdf	=	PdfDocument("Sample.pdf")#	Get	the	first	page	by	its	index	(zero-based)page	=	pdf.Pages[0]#	Get	the	rotation	information	of	the	first	pagerotation_info	=	page.Rotation#	Determine	the	rotation
angleif	rotation_info	==	PdfPageRotateAngle.RotateAngle0:	rotation_angle	=	"0	degrees	(Normal)"elif	rotation_info	==	PdfPageRotateAngle.RotateAngle90:	rotation_angle	=	"90	degrees	(Rotated	clockwise)"elif	rotation_info	==	PdfPageRotateAngle.RotateAngle180:	rotation_angle	=	"180	degrees	(Upside	down)"elif	rotation_info	==
PdfPageRotateAngle.RotateAngle270:	rotation_angle	=	"270	degrees	(Rotated	counterclockwise)"else:	rotation_angle	=	"Unknown	rotation"#	Print	the	rotation	angle	of	the	first	pageprint(f"The	rotation	angle	of	the	first	page	is	{rotation_angle}.")pdf.Close()Extract	Page	Orientation	from	PDF	with	PythonThe	orientation	of	a	PDF	page	can	be	either
portrait	(default)	or	landscape.	While	Spire.PDF	for	Python	doesn’t	provide	a	direct	method	to	detect	page	orientation,	you	can	determine	it	by	comparing	the	page’s	width	and	height.	If	the	width	is	greater	than	the	height,	the	page	is	in	landscape	mode;	otherwise,	it’s	in	portrait	mode.Here	is	a	simple	example	demonstrating	how	to	check	the
orientation	of	a	PDF	page	using	Spire.PDF	for	Python:from	spire.pdf.common	import	*from	spire.pdf	import	*#	Open	the	PDF	documentpdf	=	PdfDocument("Sample.pdf")#	Get	the	first	page	by	its	index	(zero-based)page	=	pdf.Pages[0]#	Get	the	width	and	height	of	the	first	pagewidth	=	page.Size.Widthheight	=	page.Size.Height#	Check	if	the	page	is
in	portrait	or	landscape	modeif	width	>	height:	print("The	first	page	is	in	landscape	mode.")else:	print("The	first	page	is	in	portrait	mode.")pdf.Close()Extract	Page	Labels	from	PDF	with	PythonPDF	page	labels	are	used	to	provide	custom	names	or	labels	to	pages,	which	may	differ	from	the	actual	page	numbers	(e.g.,	roman	numerals	for	the
introduction,	followed	by	Arabic	numerals	for	the	main	content).	Extracting	these	labels	is	useful	when	processing	documents	with	non-standard	numbering.To	retrieve	the	label	of	a	PDF	page,	you	can	utilize	the	PdfPageBase.PageLabel	property.	Here	is	a	simple	example	demonstrating	how	to	accomplish	this:from	spire.pdf.common	import	*from
spire.pdf	import	*#	Open	the	PDF	documentpdf	=	PdfDocument("Sample.pdf")#	Get	the	first	page	by	its	index	(zero-based)page	=	pdf.Pages[0]#	Get	the	label	of	the	first	pagelabel	=	page.PageLabel#	Print	the	label	of	the	first	pageprint(f"The	label	of	the	first	page	is:	{label}")pdf.Close()Extract	Page	Boxes	Information	from	PDF	with	PythonA	PDF
page	contains	various	boxes	that	define	its	boundaries	for	different	purposes.	Here’s	a	brief	overview:Media	Box:	Defines	the	overall	dimensions	of	the	page.Crop	Box:	Specifies	the	visible	area	of	the	page	when	viewed	or	printed.Bleed	Box:	Defines	the	region	to	which	content	should	be	clipped	when	printed,	ensuring	no	unprinted	margins.Trim	Box:
Represents	the	final	dimensions	of	the	page	after	trimming.Art	Box:	Specifies	the	extent	of	the	page’s	meaningful	content.The	following	code	example	describes	how	to	extract	the	media	box,	crop	box,	bleed	box,	trim	box,	and	art	box	information	of	a	PDF	page	using	Python	and	Spire.PDF	for	Python:from	spire.pdf.common	import	*from	spire.pdf
import	*#	Open	the	PDF	documentpdf	=	PdfDocument("Sample.pdf")#	Get	the	first	page	by	its	index	(zero-based)page	=	pdf.Pages[0]#	Get	the	media,	crop,	bleed,	trim,	and	art	boxes	of	the	first	pagemedia_box	=	page.MediaBoxcrop_box	=	page.CropBoxbleed_box	=	page.BleedBoxtrim_box	=	page.TrimBoxart_box	=	page.ArtBox#	Print	the
dimensions	and	coordinates	of	each	boxprint(f"Media	Box:	Width	=	{media_box.Width},	Height	=	{media_box.Height},	X	=	{media_box.X},	Y	=	{media_box.Y}")print(f"Crop	Box:	Width	=	{crop_box.Width},	Height	=	{crop_box.Height},	X	=	{crop_box.X},	Y	=	{crop_box.Y}")print(f"Bleed	Box:	Width	=	{bleed_box.Width},	Height	=
{bleed_box.Height},	X	=	{bleed_box.X},	Y	=	{bleed_box.Y}")print(f"Trim	Box:	Width	=	{trim_box.Width},	Height	=	{trim_box.Height},	X	=	{trim_box.X},	Y	=	{trim_box.Y}")print(f"Art	Box:	Width	=	{art_box.Width},	Height	=	{art_box.Height},	X	=	{art_box.X},	Y	=	{art_box.Y}")pdf.Close()ConclusionThis	blog	demonstrated	how	to	extract	various
page	information	from	PDF	documents	using	Python,	including	page	count,	page	size,	page	orientation,	page	rotation	angle,	page	label,	and	page	boxes.	We	hope	you	find	it	helpful.Related	Topics	The	PDF	was	developed	by	Adobe	back	in	the	early	90s	and	it	has	become	increasingly	popular	since	the	advent	of	the	Internet	and	Social	Media.	PDF	files
typically	contain	both	text	and	images	and	it	is	these	images	that	can	often	increase	the	file	size,	in	some	cases	dramatically	so.	Many	users,	especially	those	at	work,	require	files	that	are	not	prohibitive	in	size	so	that	when	they	share	or	receive	these	files	their	mailboxes	don't	get	blown.	They	also	want	to	ensure	they	don't	use	up	all	their	allocated
storage	on	their	device.	That	is	why	compressing	files,	specifically	bigger	files	like	PDF	are	so	popular.	You	can	use	the	Zamzar	PDF	compression	tool	to	reduce	the	size	of	your	PDF	file	without	impacting	the	quality	of	your	file	thereby	still	allowing	you	to	share	or	print	these	files.	Many	hours	have	I	searched	for	a	fast	and	easy,	but	mostly	accurate,
way	to	get	the	number	of	pages	in	a	PDF	document.	Since	I	work	for	a	graphic	printing	and	reproduction	company	that	works	a	lot	with	PDFs,	the	number	of	pages	in	a	document	must	be	precisely	known	before	they	are	processed.	PDF	documents	come	from	many	different	clients,	so	they	aren't	generated	with	the	same	application	and/or	don't	use
the	same	compression	method.	Here	are	some	of	the	answers	I	found	insufficient	or	simply	NOT	working:	Using	Imagick	(a	PHP	extension)	Imagick	requires	a	lot	of	installation,	apache	needs	to	restart,	and	when	I	finally	had	it	working,	it	took	amazingly	long	to	process	(2-3	minutes	per	document)	and	it	always	returned	1	page	in	every	document
(haven't	seen	a	working	copy	of	Imagick	so	far),	so	I	threw	it	away.	That	was	with	both	the	getNumberImages()	and	identifyImage()	methods.	Using	FPDI	(a	PHP	library)	FPDI	is	easy	to	use	and	install	(just	extract	files	and	call	a	PHP	script),	BUT	many	of	the	compression	techniques	are	not	supported	by	FPDI.	It	then	returns	an	error:	FPDF	error:	This
document	(test_1.pdf)	probably	uses	a	compression	technique	which	is	not	supported	by	the	free	parser	shipped	with	FPDI.	Opening	a	stream	and	search	with	a	regular	expression:	This	opens	the	PDF	file	in	a	stream	and	searches	for	some	kind	of	string,	containing	the	pagecount	or	something	similar.	$f	=	"test1.pdf";	$stream	=	fopen($f,	"r");
$content	=	fread	($stream,	filesize($f));	if(!$stream	||	!$content)	return	0;	$count	=	0;	//	Regular	Expressions	found	by	Googling	(all	linked	to	SO	answers):	$regex	=	"/\/Count\s+(\d+)/";	$regex2	=	"/\/Page\W*(\d+)/";	$regex3	=	"/\/N\s+(\d+)/";	if(preg_match_all($regex,	$content,	$matches))	$count	=	max($matches);	return	$count;	/\/Count\s+(\d+)/
(looks	for	/Count)	doesn't	work	because	only	a	few	documents	have	the	parameter	/Count	inside,	so	most	of	the	time	it	doesn't	return	anything.	Source.	/\/Page\W*(\d+)/	(looks	for	/Page)	doesn't	get	the	number	of	pages,	mostly	contains	some	other	data.	Source.	/\/N\s+(\d+)/	(looks	for	/N)	doesn't	work	either,	as	the	documents	can	contain	multiple
values	of	/N	;	most,	if	not	all,	not	containing	the	pagecount.	Source.	See	the	answer	below	Convenience	No	software	to	download.	Just	select	your	file,	pick	a	format	to	convert	to	and	away	you	go.	Experience	We	have	been	successfully	converting	files	since	2006,	with	millions	of	happy	customers.	Support	Got	a	file	you	can't	convert?	Just	email	us	and
we'll	ask	our	dedicated	engineers	to	take	a	look	for	you.	Speed	We	aim	to	complete	all	our	conversions	in	under	10	minutes.	Formats	We	support	1200+	file	formats.	When	dealing	with	a	PDF	file	in	our	regular	lifestyle,	we	may	need	to	know	how	many	pages	there	are.	If	the	page	number	is	out	of	bounds,	you	may	receive	an	error	while	accessing	any
page	or	anything	from	the	PDF.	We	can	count	the	number	of	pages	in	a	PDF	file	or	Get	number	of	pages	in	Pdf	Python	to	avoid	these	types	of	problems,	Count	Number	Of	Pages	In	Pdf	Python,	Python	Pdf	Page	Count,	Python	includes	a	variety	of	built-in	functions.	To	count	the	pages	of	a	PDF	file,	we	can	use	the	Python	inbuilt	library	‘PyPDF2’	Pypdf2
Get	Number	Of	Pages,	Pypdf2	Number	Of	Pages,	Python	Count	Pdf	Pages,	Python	Get	Pdf	Page	Count,	Python	Get	Number	Of	Pages	In	Pdf,	Python	Pdf	Number	Of	Pages,	Python	Count	Pages	In	Pdf,	Count	Pdf	Pages	Python,	Pypdf2	Count	Pages,	Fitz	Get	Number	Of	Pages,	Pymupdf	Get	Number	Of	Pages,	Pdf	Page	Count	Python,	Pypdf2	Get	Page
Number,	Python	Read	Pdf,	Read	Pdf	Python,	Fitz	Page	Count	processes	are	mentioned	below.	Before	we	work	with	the	module	PyPDF2	we	should	first	install	it.	pip	install	PyPDF2	Output:	Collecting	PyPDF2	Downloading	PyPDF2-1.26.0.tar.gz	(77	kB)	|████████████████████████████████|	77	kB	2.8	MB/s	Building	wheels	for	collected
packages:	PyPDF2	Building	wheel	for	PyPDF2	(setup.py)	...	done	Created	wheel	for	PyPDF2:	filename=PyPDF2-1.26.0-py3-none-any.whl	size=61102	sha256=818687400c96b3b	bcd3f38aecf0870e60e7c5241f0c6aa10b8fc45ffb26de2f1	Stored	in	directory:	/root/.cache/pip/wheels/80/1a/24/648467ade3a77ed20f35cfd2badd32134e96dd25c	a811e64b3
Successfully	built	PyPDF2	Installing	collected	packages:	PyPDF2	Successfully	installed	PyPDF2-1.26.0	Count	of	Number	of	Pages	in	a	PDF	File	in	Python	Below	are	the	ways	to	count	the	number	of	pages	in	the	given	pdf	file:	Using	PyPDF2	module	Using	pymupdf	module	Method	#1:	Using	PyPDF2	module	Approach:	Import	PyPDF2	module	using	the
import	keyword	Open	the	PDF	file	in	read-binary	mode(converts	file	into	binary	format)	using	the	open()	function	and	store	it	in	a	variable.	Pass	the	above	PDF	file	to	the	PdfFileReader()	function	to	read	the	pdf	file	and	store	it	in	another	variable.	Apply	numPages	attribute	on	the	above	read	pdf	to	count	the	total	number	of	pages	in	the	given	PDF	file
and	store	it	in	another	variable.	Print	the	count	of	the	total	number	of	pages	in	the	given	PDF	file.	The	Exit	of	the	Program.	Below	is	the	implementation:	#	Import	PyPDF2	module	using	the	import	keyword	import	PyPDF2	#	Open	the	PDF	file	in	read-binary	mode(converts	file	into	binary	format)	using	the	open()	#	function	and	store	it	in	a	variable.
gvn_file	=	open('btechgeeks.pdf',	'rb')	#	Pass	the	above	PDF	file	to	the	PdfFileReader()	function	to	read	the	pdf	file	and	#	store	it	in	another	variable.	pdf_read	=	PyPDF2.PdfFileReader(gvn_file)	#	Apply	numPages	attribute	on	the	above	read	pdf	to	count	the	total	number	of	pages	in	#	the	given	PDF	file	and	store	it	in	another	variable.	pages_count	=
pdf_read.numPages	#	Print	the	count	of	total	number	of	pages	in	the	given	PDF	file	print("The	total	number	of	pages	in	the	given	PDF	file	=	",	pages_count)	Output:	The	total	number	of	pages	in	the	given	PDF	file	=	8	Method	#2:	Using	pymupdf	module	First,	install	the	pymupdf	module	before	going	to	the	code	given	below:	pip	install	pymupdf
Approach:	Import	fitz	function	using	the	import	keyword	Open	the	PDF	file	using	the	open()	function	and	store	it	in	a	variable.	Apply	pageCount	on	the	above	pdf	file	to	get	the	count	of	total	number	of	pages	in	a	given	PDF	file	and	print	the	result.	The	Exit	of	the	Program.	Below	is	the	implementation:	#	Import	fitz	function	using	the	import	keyword
import	fitz	#	Open	the	PDF	file	using	the	open()	function	and	store	it	in	a	variable.	gvn_pdffile	=	fitz.open('btechgeeks.pdf')	#	Apply	pageCount	on	the	above	pdf	file	to	get	the	count	of	total	number	of	#	pages	in	a	given	PDF	file	and	print	the	result.	print("The	total	number	of	pages	in	the	given	PDF	file:	")	gvn_pdffile.pageCount	Output:	The	total
number	of	pages	in	the	given	PDF	file:	8	Recommended	Reading	On:	How	to	Find	the	Page	Number	of	a	Text	from	a	PDF	File	in	Python?	Trusted	by	over	10,000+	studentsWe	are	your	complete	resource	for	starting,	growing,	and	monetizing	an	online	business	-	from	start	to	finish.Start	a	BlogI	have	over	a	decade	of	experience	building	and	managing
high-traffic	authority	websites	that	rank	in	the	search	engines	and	convert	like	crazy.I've	developed	a	simple,	proven	process	to	scale	the	traffic,	stickiness,	and	conversions	of	a	website.	Now	I'm	looking	to	teach	those	same	methods	to	you.Digital	marketing	can	be	overwhelming,	which	is	why	we've	done	our	best	to	simplify	things	down	do	their	base
levels.We've	designed	all	of	our	resources	with	simplicity	in	mind.	This	is	our	guiding	light,	as	we	fully	understand	that	learning	digital	marketing	can	be	overwhelming	at	times.	We've	created	our	lessons	to	be	simple	to	read,	understand,	and	implement.The	experts	behind	our	lessons	aren't	just	teaching	-	they're	experienced	professionals	who	have
done	this	before.	Rest	assured	you'll	be	learning	from	the	best	in	the	business.We	don't	just	provide	simple	information	-	we	back	it	up	with	helpful	assets	and	offer	actionable	recommendations	that	you	can	take.	Save	yourself	hours	of	searching	with	our	reviews,	curated	collections,	and	insightful	recommendations.Our	team	has	spent	years	collecting
real-world	resources	and	examples	that	you	can	reference	while	building	your	online	business.	You'll	see	our	suggestions	implemented	in	the	real	world,	from	people	we've	never	even	met.	Many	hours	have	I	searched	for	a	fast	and	easy,	but	mostly	accurate,	way	to	get	the	number	of	pages	in	a	PDF	document.	Since	I	work	for	a	graphic	printing	and
reproduction	company	that	works	a	lot	with	PDFs,	the	number	of	pages	in	a	document	must	be	precisely	known	before	they	are	processed.	PDF	documents	come	from	many	different	clients,	so	they	aren't	generated	with	the	same	application	and/or	don't	use	the	same	compression	method.	Here	are	some	of	the	answers	I	found	insufficient	or	simply
NOT	working:	Using	Imagick	(a	PHP	extension)	Imagick	requires	a	lot	of	installation,	apache	needs	to	restart,	and	when	I	finally	had	it	working,	it	took	amazingly	long	to	process	(2-3	minutes	per	document)	and	it	always	returned	1	page	in	every	document	(haven't	seen	a	working	copy	of	Imagick	so	far),	so	I	threw	it	away.	That	was	with	both	the
getNumberImages()	and	identifyImage()	methods.	Using	FPDI	(a	PHP	library)	FPDI	is	easy	to	use	and	install	(just	extract	files	and	call	a	PHP	script),	BUT	many	of	the	compression	techniques	are	not	supported	by	FPDI.	It	then	returns	an	error:	FPDF	error:	This	document	(test_1.pdf)	probably	uses	a	compression	technique	which	is	not	supported	by
the	free	parser	shipped	with	FPDI.	Opening	a	stream	and	search	with	a	regular	expression:	This	opens	the	PDF	file	in	a	stream	and	searches	for	some	kind	of	string,	containing	the	pagecount	or	something	similar.	$f	=	"test1.pdf";	$stream	=	fopen($f,	"r");	$content	=	fread	($stream,	filesize($f));	if(!$stream	||	!$content)	return	0;	$count	=	0;	//	Regular
Expressions	found	by	Googling	(all	linked	to	SO	answers):	$regex	=	"/\/Count\s+(\d+)/";	$regex2	=	"/\/Page\W*(\d+)/";	$regex3	=	"/\/N\s+(\d+)/";	if(preg_match_all($regex,	$content,	$matches))	$count	=	max($matches);	return	$count;	/\/Count\s+(\d+)/	(looks	for	/Count)	doesn't	work	because	only	a	few	documents	have	the	parameter	/Count	inside,
so	most	of	the	time	it	doesn't	return	anything.	Source.	/\/Page\W*(\d+)/	(looks	for	/Page)	doesn't	get	the	number	of	pages,	mostly	contains	some	other	data.	Source.	/\/N\s+(\d+)/	(looks	for	/N)	doesn't	work	either,	as	the	documents	can	contain	multiple	values	of	/N	;	most,	if	not	all,	not	containing	the	pagecount.	Source.	See	the	answer	below	In	this
article,	we	will	see	how	can	we	count	the	total	number	of	pages	in	a	PDF	file	in	Python,	For	this	article	there	is	no	such	prerequisite,	we	will	use	PyPDF2	library	for	this	purpose.	PyPDF2	is	a	free	and	open-source	pure-Python	PyPDF	library	capable	of	performing	many	tasks	like	splitting,	merging,	cropping,	and	transforming	the	pages	of	PDF	files.	It
can	also	add	custom	data,	viewing	options,	and	passwords	to	PDF	files.	PyPDF2	can	retrieve	text	and	metadata	from	PDFs	as	well.	Refer	to	this	"Working	with	PDF	files	in	Python"	to	explore	about	PyPDF2	Installing	required	libraryExecute	the	below	command	to	install	the	PyPDF2	library	in	the	command	prompt	or	terminal.	pip	install	PyPDF2Step	to
Count	the	number	of	pages	in	a	PDF	fileStep	1:	Import	PyPDF2	library	into	the	Python	program	import	PyPDF2Step	2:	Open	the	PDF	file	in	read	binary	format	using	file	handling	file	=	open('your	pdf	file	path',	'rb')Step	3:	Read	the	pdf	using	the	PdfReader()	function	of	the	PyPDF2	library	pdfReader	=	PyPDF2.PdfReader(file)Note:	These	above	three
steps	are	similar	for	all	methods	that	we	are	going	to	see	using	an	example.	Methods	to	count	PDF	pagesWe	are	going	to	learn	three	methods	to	count	the	number	of	pages	in	a	PDF	file	which	are	as	follows:	By	using	the	len(pdfReader.pages)	property.By	using	the	getNumPages()	method.By	using	the	pages	property	and	len()	function.Method	1:
Using	len(pdfReader.pages)	propertylen(pdfReader.pages)	is	a	property	of	PdfReader	Class	that	returns	the	total	number	of	pages	in	the	PDF	file.	totalPages1	=	len(pdfReader.pages)For	Example:	Python3	#	importing	PyPDF2	library	import	PyPDF2	#	opened	file	as	reading	(r)	in	binary	(b)	mode	file	=	open('/home/hardik/GFG_Temp/dbmsFile.pdf',
'rb')	#	store	data	in	pdfReader	pdfReader	=	PyPDF2.PdfReader(file)	#	count	number	of	pages	totalPages	=	len(pdfReader.pages)	#	print	number	of	pages	print(f"Total	Pages:	{totalPages}")	Output:	Total	Pages:	10In	the	above	example,	we	imported	the	PyPDF2	module	and	opened	the	file	using	file	handling	in	read	binary	format	after	that	with	the
help	of	PdfReader()	function	of	PyPDF2	module	we	read	the	pdf	file	which	we	opened	previously,	then	with	the	help	of	the	numPages	property	of	the	module	we	counted	the	total	pages	of	PDF	file	and	stored	the	total	number	of	pages	in	a	variable	"totalPages"	for	further	usage	and	at	last,	we	print	the	variable	holding	the	total	page	count	of	PDF	file.
Method	2:	Using	getNumPages()	methodgetNumPages()	is	a	method	of	PdfReader	class	that	returns	an	integer	specifying	a	total	number	of	pages	and	it	takes	no	argument	this	method	is	deprecated	since	version	1.28.0	but	we	can	still	use	another	method	that	comes	in	its	replacement	is	next	method	discussed.	totalPages2	=
pdfReader.getNumPages()	Python3	#	importing	PyPDF2	library	import	PyPDF2	#	opened	file	as	reading	(r)	in	binary	(b)	mode	file	=	open('/home/hardik/GFG_Temp/dbmsFile.pdf',	'rb')	#	store	data	in	pdfReader	pdfReader	=	PyPDF2.PdfReader(file)	#	count	number	of	pages	totalPages	=	pdfReader.getNumPages()	#	print	number	of	pages
print(f"Total	Pages:	{totalPages}")	Output:	Total	Pages:	10In	the	above	example,	we	imported	the	PyPDF2	module	and	opened	the	file	using	file	handling	in	reading	binary	format	after	that	with	the	help	of	the	PdfReader()	function	of	PyPDF2	module	we	read	the	pdf	file	that	we	opened	previously,	then	with	the	help	of	getNumPages()	method	of	the
module	we	counted	the	total	pages	of	PDF	file	and	stored	the	total	number	of	pages	in	a	variable	"totalpages"	for	further	usage	and	at	last,	we	print	the	variable	holding	the	total	page	count	of	PDF	file.	Method	3:	Using	pages	property	and	len()	functionpages	is	a	read-only	property	that	emulates	a	list	of	Page	objects	and	using	len()	function	which	is
Python's	inbuilt	function	to	count	the	length	of	a	sequence	is	used	combinedly	to	determine	the	total	pages	of	the	PDF.	totalPages3	=	len(pdfReader.pages)	Python3	#	importing	PyPDF2	library	import	PyPDF2	#	opened	file	as	reading	(r)	in	binary	(b)	mode	file	=	open('/home/hardik/GFG_Temp/dbmsFile.pdf',	'rb')	#	store	data	in	pdfReader	pdfReader
=	PyPDF2.PdfReader(file)	#	count	number	of	pages	totalPages	=	len(pdfReader.pages)	#	print	number	of	pages	print(f"Total	Pages:	{totalPages}")	Output:		Total	Pages:	10In	the	above	example	we	imported	the	PyPDF2	module	and	opened	the	file	using	file	handling	in	read	binary	format	then	with	the	help	of	PdfReader()	function	of	PyPDF2	module
we	read	the	pdf	file	which	we	opened	previously,	then	with	the	help	of	the	pages	property	of	the	module	we	get	the	list	of	all	the	pages	of	PDF	file	and	with	the	help	of	len()	function	we	counted	the	total	pages	returned	by	pages	property	and	stored	the	total	number	of	pages	in	a	variable	"totalpages"	for	further	usage	and	at	last,	we	print	the	variable
holding	the	total	page	count	of	PDF	file.	Many	hours	have	I	searched	for	a	fast	and	easy,	but	mostly	accurate,	way	to	get	the	number	of	pages	in	a	PDF	document.	Since	I	work	for	a	graphic	printing	and	reproduction	company	that	works	a	lot	with	PDFs,	the	number	of	pages	in	a	document	must	be	precisely	known	before	they	are	processed.	PDF
documents	come	from	many	different	clients,	so	they	aren't	generated	with	the	same	application	and/or	don't	use	the	same	compression	method.	Here	are	some	of	the	answers	I	found	insufficient	or	simply	NOT	working:	Using	Imagick	(a	PHP	extension)	Imagick	requires	a	lot	of	installation,	apache	needs	to	restart,	and	when	I	finally	had	it	working,	it
took	amazingly	long	to	process	(2-3	minutes	per	document)	and	it	always	returned	1	page	in	every	document	(haven't	seen	a	working	copy	of	Imagick	so	far),	so	I	threw	it	away.	That	was	with	both	the	getNumberImages()	and	identifyImage()	methods.	Using	FPDI	(a	PHP	library)	FPDI	is	easy	to	use	and	install	(just	extract	files	and	call	a	PHP	script),
BUT	many	of	the	compression	techniques	are	not	supported	by	FPDI.	It	then	returns	an	error:	FPDF	error:	This	document	(test_1.pdf)	probably	uses	a	compression	technique	which	is	not	supported	by	the	free	parser	shipped	with	FPDI.	Opening	a	stream	and	search	with	a	regular	expression:	This	opens	the	PDF	file	in	a	stream	and	searches	for	some
kind	of	string,	containing	the	pagecount	or	something	similar.	$f	=	"test1.pdf";	$stream	=	fopen($f,	"r");	$content	=	fread	($stream,	filesize($f));	if(!$stream	||	!$content)	return	0;	$count	=	0;	//	Regular	Expressions	found	by	Googling	(all	linked	to	SO	answers):	$regex	=	"/\/Count\s+(\d+)/";	$regex2	=	"/\/Page\W*(\d+)/";	$regex3	=	"/\/N\s+(\d+)/";
if(preg_match_all($regex,	$content,	$matches))	$count	=	max($matches);	return	$count;	/\/Count\s+(\d+)/	(looks	for	/Count)	doesn't	work	because	only	a	few	documents	have	the	parameter	/Count	inside,	so	most	of	the	time	it	doesn't	return	anything.	Source.	/\/Page\W*(\d+)/	(looks	for	/Page)	doesn't	get	the	number	of	pages,	mostly	contains	some
other	data.	Source.	/\/N\s+(\d+)/	(looks	for	/N)	doesn't	work	either,	as	the	documents	can	contain	multiple	values	of	/N	;	most,	if	not	all,	not	containing	the	pagecount.	Source.	See	the	answer	below

